Linguistic Knowledge and Transferability of Contextual Representations

Nelson F. Liu

Matt Gardner

Yonatan Belinkov

Matthew E. Peters

Noah A. Smith

NAACL 2019—June 3, 2019

[McCann et al., 2017; Peters et al., 2018a; Devlin et al., 2019, *inter alia*] Contextual Word Representations Are Extraordinarily Effective

- Contextual word representations (from *contextualizers* like ELMo or BERT) work well on many NLP tasks.
- But **why** do they work so well?
- Better understanding enables principled enhancement.
- **This work:** studies a few questions about their generalizability and transferability.

(1) Probing Contextual Representations

Question: Is the information necessary for a variety of core NLP tasks linearly recoverable from contextual word representations?

Answer: Yes, to a great extent! Tasks with lower performance may require finegrained linguistic knowledge.

(2) How Does Transferability Vary?

Question: How does transferability vary across contextualizer layers?

Answer: First layer in LSTMs is the most transferable. Middle layers for transformers.

(3) Why Does Transferability Vary?

Question: **Why** does transferability vary across contextualizer layers?

Answer: It depends on pretraining task-specificity!

(4) Alternative Pretraining Objectives

Question: How does language model pretraining compare to alternatives?

Answer: Even with 1 million tokens, language model pretraining yields the most transferable representations.

But, transferring between related tasks does help.

Probing Models

Input Tokens

Ms.

Haag

plays

Elianti

Pairwise Probing

Input Tokens

plays

Probing Model Setup

- Contextualizer weights are always frozen.
- Results are from the highest-performing contextualizer layer.
- We use a linear probing model.

Contextualizers Analyzed

[Peters et al., 2018a,b]

Contextualizers Analyzed

ELMo

Bidirectional language model (BiLM) pretraining on 1B Word Benchmark 2-layer4-layer6-layerLSTMLSTMTransformer(ELMo original)(ELMo 4-layer)transformer)

[Peters et al., 2018a,b; Radford et al., 2018]

Contextualizers Analyzed

ELMo

Bidirectional language model (BiLM) pretraining on 1B Word Benchmark

2-layer 4-layer LSTM LSTM (ELMo original) (ELMo 4-layer) 6-layer Transformer (ELMo transformer)

OpenAl Transformer Left-to-right language model pretraining on uncased BookCorpus

12-layer transformer [Peters et al., 2018a,b; Radford et al., 2018; Devlin et al., 2019]

Contextualizers Analyzed

ELMo

Bidirectional language model (BiLM) pretraining on 1B Word Benchmark

OpenAl Transformer Left-to-right language model pretraining on uncased BookCorpus

BERT (cased) Masked language model pretraining on BookCorpus + Wikipedia

(1) Probing Contextual Representations

Question: Is the information necessary for a variety of core NLP tasks linearly recoverable from contextual word representations?

Answer: Yes, to a great extent! Tasks with lower performance may require finegrained linguistic knowledge.

Examined 17 Diverse Probing Tasks

- Part-of-Speech Tagging
- CCG Supertagging
- Semantic Tagging
- Preposition
 supersense
 disambiguation
- Event Factuality
- Syntactic
 Constituency
 Ancestor Tagging

- Syntactic
 Chunking
- Named entity recognition
- Grammatical error detection
- Conjunct identification

- Syntactic Dependency Arc Prediction
- Syntactic Dependency Arc Classification
- Semantic Dependency
 Arc Prediction
- Semantic Dependency
 Arc Classification
- Coreference Arc Prediction

Linear Probing Models Rival Task-Specific Architectures

- Part-of-Speech Tagging
- CCG Supertagging
- Semantic Tagging
- Preposition supersense disambiguation
- Event Factuality
- Syntactic
 Constituency
 Ancestor Tagging

- Syntactic
 Chunking
- Named entity recognition
- Grammatical
 error detection
- Conjunct identification

- Syntactic Dependency Arc Prediction
- Syntactic Dependency Arc Classification
- Semantic Dependency
 Arc Prediction
- Semantic Dependency
 Arc Classification
- Coreference Arc Prediction

Event Factuality

Event Factuality

But Linear Probing Models Underperform on Some Tasks

- Tasks that linear model + contextual word representation performs poorly may require more fine-grained linguistic knowledge.
- In these cases, task-specific contextualization leads to especially large gains. See the paper for more details.

Named Entity Recognition

Named Entity Recognition

Named Entity Recognition

Named Entity Recognition

(2) How Does Transferability Vary?

Question: How does transferability vary across contextualizer layers?

Answer: First layer in LSTMs is the most transferable. Middle layers for transformers.

LSTM-based Contextualizers

LSTM-based Contextualizers

LSTM-based Contextualizers

Transformer-based Contextualizers

LSTM-based Contextualizers

Transformer-based Contextualizers

(3) Why Does Transferability Vary?

Question: **Why** does transferability vary across contextualizer layers?

Answer: It depends on pretraining task-specificity!

Layerwise Patterns Dictated by Perplexity

LSTM-based ELMo (original)

Layerwise Patterns Dictated by Perplexity

LSTM-based ELMo (4-layer)

Layerwise Patterns Dictated by Perplexity

Transformer-based ELMo (6-layer)

(4) Alternative Pretraining Objectives

Question: How does language model pretraining compare to alternatives?

Answer: Even with 1 million tokens, language model pretraining yields the most transferable representations.

But, transferring between related tasks does help.

Investigating Alternatives to Language Model Pretraining

- How does the language modeling as a pretraining objective compare to explicitly supervised tasks?
- Pretrain ELMo (original)-architecture contextualizer on the Penn Treebank, with a variety of different objectives.
- Evaluate how well the resultant representations transfer to target (held-out) tasks.

Pretraining Beyond Language Modeling" for more tasks + multitasking.

Target Task: Syntactic Dependency Classification (EWT)

Pretraining on related tasks is better than BiLM

Target Task: Syntactic Dependency Classification (EWT)

PTB-trained BiLM vs ELMo

Also found by Saphra and Lopez (2019), check out poster 1402 on Wednesday!

Online at: bit.ly/cwr-analysis-related Some Related Work at NAACL

Wed. June 5, 10:30 – 12:00. ML & Syntax, Hyatt Exhibit Hall:

Understanding Learning Dynamics Of Language Models with SVCCA. Naomi Saphra and Adam Lopez.

Structural Supervision Improves Learning of Non-Local Grammatical Dependencies. Ethan Wilcox et al.

Analysis Methods in Neural Language Processing: A Survey. Yonatan Belinkov and James Glass.

Wed. June 5, 16:15–16:30. Machine Learning, Nicollet B/C:

A Structural Probe for Finding Syntax in Word Representations. John Hewitt and Christopher D. Manning.

Takeaways

- Features from pretrained contextualizers are sufficient for high performance on a broad set of tasks.
- Tasks with lower performance might require fine-grained linguistic knowledge.
- Layerwise patterns in transferability exist. Dictated by how task-specific each layer is.
- Even on PTB-size data, BiLM pretraining yields the most general representations.
 - Pretraining on related tasks helps
 - More data helps even more!

Code: http://nelsonliu.me/papers/contextual-repr-analysis

Takeaways

- Features from pretrained contextualizers are sufficient for high performance on a broad set of tasks.
- Tasks with lower performance might require fine-grained linguistic knowledge.
- Layerwise patterns in transferability exist. Dictated by how task-specific each layer is.
- Even on PTB-size data, BiLM pretraining yields the most general representations.
 - Pretraining on related tasks helps
 - More data helps even more!

Code: http://nelsonliu.me/papers/contextual-repr-analysis

Bonus Slides

Probing Task Examples

Part-of-Speech Tagging

Soon she was running the office RB PRP VBD VBG DT NN

CCG Supertagging

Syntactic Constituency Ancestor Tagging

Semantic Tagging

- Semantic tags abstract over redundant POS distinctions and disambiguate useful cases within POS tags.
- (1) Sarah bought herself a book
- (2) Sarah herself bought a book
- Same POS tag (Personal Pronoun), but different semantic function. (1) reflexive function, (2) emphasizing function

Preposition Supersense Disambiguation

- Classify a preposition's lexical semantic contribution (function), or the semantic role / relation it mediates (role).
- Specialized kind of word sense disambiguation.

Preposition Supersense Disambiguation

- (1) I was booked **for/DURATION** 2 nights **at/LOCUS** this hotel **in/TIME** Oct 2007.
- (2) I went to/GOAL ohm after/EXPLANATION \sim TIME reading some of/QUANTITY \sim WHOLE the reviews.
- (3) It was very upsetting to see this kind of/SPECIES behavior especially in_front_of/LOCUS my/SOCIALREL → GESTALT four year_old.

Event Factuality

• Label predicates with the factuality of events they describe.

```
Event "leave" did not happen.
```

(3) a. Jo didn't remember to leave.
b. Jo didn't remember leaving.
Event "leaving" happened.

Syntactic Chunking

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to] [NP only # 1.8 billion] [PP in] [NP September] .

Named Entity Recognition

[ORG U.N.] official [PER Ekeus] heads for [LOC Baghdad].
Grammatical Error Detection

Conjunct Identification

 And the city decided to treat its guests more like [royalty] or [rock stars] than factory owners.

Two Types of Pairwise Relations

- Arc prediction tasks: Given two random tokens, identify whether a relation exists between them.
- Arc classification tasks: Given two tokens that are known to be related, identify what the relation is.

Syntactic Dependency Arc Prediction

Input Tokens

Label: True, there exists a relation

Syntactic Dependency Arc Prediction

Label: True, there exists a relation

Syntactic Dependency Arc Prediction

Label: False, there does not exist a relation

Semantic Dependencies

Coreference Relations

"I voted for Nader because he was most aligned with my values," she said.

Setting Up Alternative Pretraining Objectives

Language Model Pretraining

Language Model Pretraining

Chunking Pretraining

Chunking Pretraining

Flexible Paradigm, Use Any Task!

