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Contextual Word Representations 
Are Extraordinarily Effective

• Contextual word representations (from contextualizers 
like ELMo or BERT) work well on many NLP tasks.


• But why do they work so well?


• Better understanding enables principled enhancement.


• This work: studies a few questions about their 
generalizability and transferability.

[McCann et al., 2017; Peters et al., 2018a; Devlin et al., 2019, inter alia]
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(1) Probing Contextual Representations

Question: Is the information necessary for a 
variety of core NLP tasks linearly recoverable 
from contextual word representations?

Answer: Yes, to a great extent! Tasks with 
lower performance may require fine-
grained linguistic knowledge.
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Question: How does transferability vary 
across contextualizer layers?

Answer: First layer in LSTMs is the 
most transferable. Middle layers for 
transformers.
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(2) How Does Transferability Vary?



(3) Why Does Transferability Vary?
Question: Why does transferability 
vary across contextualizer layers?

Answer: It depends on pretraining 
task-specificity!
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(4) Alternative Pretraining Objectives

Question: How does language model 
pretraining compare to alternatives?

Answer: Even with 1 million tokens, 
language model pretraining yields the 
most transferable representations. 


But, transferring between related tasks 
does help.
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Probing Models
[Shi et al., 2016; Adi et al., 2017]

!7



Probing Models
[Shi et al., 2016; Adi et al., 2017]
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Probing Models
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Probing Models
[Shi et al., 2016; Adi et al., 2017]

!10



Probing Models
[Shi et al., 2016; Adi et al., 2017]
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Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]
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Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]
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Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]
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• Contextualizer weights are always frozen.


• Results are from the highest-performing contextualizer layer.


• We use a linear probing model.

Probing Model Setup
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Contextualizers Analyzed
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Contextualizers Analyzed
ELMo 

Bidirectional language 
model (BiLM) pretraining 
on 1B Word Benchmark

2-layer

LSTM


(ELMo original)

4-layer

LSTM


(ELMo 4-layer)

6-layer

Transformer


(ELMo 
transformer)

[Peters et al., 2018a,b]
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Contextualizers Analyzed
ELMo 

Bidirectional language 
model (BiLM) pretraining 
on 1B Word Benchmark

OpenAI Transformer 
Left-to-right language 
model pretraining on 
uncased BookCorpus

12-layer 
transformer

2-layer

LSTM


(ELMo original)

4-layer

LSTM


(ELMo 4-layer)

6-layer

Transformer


(ELMo 
transformer)

[Peters et al., 2018a,b; Radford et al., 2018]
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24-layer 
transformer

(BERT large)

Contextualizers Analyzed
ELMo 

Bidirectional language 
model (BiLM) pretraining 
on 1B Word Benchmark

OpenAI Transformer 
Left-to-right language 
model pretraining on 
uncased BookCorpus

BERT (cased) 
Masked language model 
pretraining on 
BookCorpus + Wikipedia

12-layer 
transformer

(BERT base)

12-layer 
transformer

2-layer

LSTM


(ELMo original)

4-layer

LSTM


(ELMo 4-layer)

6-layer

Transformer


(ELMo 
transformer)

[Peters et al., 2018a,b; Radford et al., 2018; Devlin et al., 2019]
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(1) Probing Contextual Representations

Question: Is the information necessary for a 
variety of core NLP tasks linearly recoverable 
from contextual word representations?

Answer: Yes, to a great extent! Tasks with 
lower performance may require fine-
grained linguistic knowledge.
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Examined 17 Diverse Probing Tasks

• Part-of-Speech 
Tagging


• CCG Supertagging


• Semantic Tagging


• Preposition 
supersense 
disambiguation


• Event Factuality


• Syntactic 
Constituency 
Ancestor Tagging
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• Syntactic 
Chunking


• Named entity 
recognition


• Grammatical 
error detection


• Conjunct 
identification

• Syntactic  Dependency 
Arc Prediction


• Syntactic  Dependency 
Arc Classification


• Semantic  Dependency 
Arc Prediction


• Semantic  Dependency 
Arc Classification


• Coreference Arc 
Prediction



Linear Probing Models Rival 
Task-Specific Architectures

• Part-of-Speech 
Tagging


• CCG Supertagging


• Semantic Tagging


• Preposition 
supersense 
disambiguation


• Event Factuality


• Syntactic 
Constituency 
Ancestor Tagging
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• Syntactic 
Chunking


• Named entity 
recognition


• Grammatical 
error detection


• Conjunct 
identification

• Syntactic  Dependency 
Arc Prediction


• Syntactic  Dependency 
Arc Classification


• Semantic  Dependency 
Arc Prediction


• Semantic  Dependency 
Arc Classification


• Coreference Arc 
Prediction
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But Linear Probing Models 
Underperform on Some Tasks

• Tasks that linear model + contextual word representation 
performs poorly may require more fine-grained linguistic 
knowledge.


• In these cases, task-specific contextualization leads to 
especially large gains. See the paper for more details.
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Question: How does transferability vary 
across contextualizer layers?

Answer: First layer in LSTMs is the 
most transferable. Middle layers for 
transformers.
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(2) How Does Transferability Vary?



Layerwise Patterns in Transferability
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Layerwise Patterns in Transferability
LSTM-based Contextualizers

ELMo (original) ELMo (4-layer)
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Layerwise Patterns in Transferability
LSTM-based Contextualizers

ELMo (original) ELMo (4-layer)
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Layerwise Patterns in Transferability
LSTM-based Contextualizers

Transformer-based Contextualizers

ELMo (original) ELMo (4-layer)
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Layerwise Patterns in Transferability
LSTM-based Contextualizers

Transformer-based Contextualizers

ELMo (original)

ELMo (transformer)

ELMo (4-layer)

OpenAI Transformer

BERT (base, cased) BERT (large, cased)
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(3) Why Does Transferability Vary?
Question: Why does transferability 
vary across contextualizer layers?

Answer: It depends on pretraining 
task-specificity!
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LSTM-based ELMo (original)

Outputs of higher LSTM layers are 
better for language modeling 

(have lower perplexity)



Layerwise Patterns  
Dictated by Perplexity

LSTM-based ELMo (4-layer)
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(4) Alternative Pretraining Objectives

Question: How does language model 
pretraining compare to alternatives?

Answer: Even with 1 million tokens, 
language model pretraining yields the 
most transferable representations. 


But, transferring between related tasks 
does help.
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Investigating Alternatives to 
Language Model Pretraining

• How does the language modeling as a pretraining 
objective compare to explicitly supervised tasks?


• Pretrain ELMo (original)-architecture contextualizer on the 
Penn Treebank, with a variety of different objectives.


• Evaluate how well the resultant representations transfer to 
target (held-out) tasks.
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See Wang et al. (ACL 2019) "How to Get Past Sesame Street: Sentence-Level 
Pretraining Beyond Language Modeling" for more tasks + multitasking.
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Pretraining on related tasks is better than BiLM
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But, BiLM on more data is even better.
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Also found by Saphra and Lopez (2019), check out poster 1402 on Wednesday!



Some Related Work at NAACL

Wed. June 5, 10:30 – 12:00. ML & Syntax, Hyatt Exhibit Hall: 
Understanding Learning Dynamics Of Language Models with 
SVCCA. Naomi Saphra and Adam Lopez. 
Structural Supervision Improves Learning of Non-Local 
Grammatical Dependencies. Ethan Wilcox et al.

Analysis Methods in Neural Language Processing: A Survey. 
Yonatan Belinkov and James Glass.


Wed. June 5, 16:15–16:30. Machine Learning, Nicollet B/C: 
A Structural Probe for Finding Syntax in Word Representations. 
John Hewitt and Christopher D. Manning.
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Online at: bit.ly/cwr-analysis-related

http://bit.ly/cwr-analysis-related


Takeaways

• Features from pretrained contextualizers are sufficient for 
high performance on a broad set of tasks.


• Tasks with lower performance might require fine-grained 
linguistic knowledge.


• Layerwise patterns in transferability exist. Dictated by how 
task-specific each layer is.


• Even on PTB-size data, BiLM pretraining yields the most 
general representations.


• Pretraining on related tasks helps


• More data helps even more!

http://nelsonliu.me/papers/contextual-repr-analysisCode:
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Takeaways

http://nelsonliu.me/papers/contextual-repr-analysisCode:

Thanks! 

Questions?

• Features from pretrained contextualizers are sufficient for 
high performance on a broad set of tasks.


• Tasks with lower performance might require fine-grained 
linguistic knowledge.


• Layerwise patterns in transferability exist. Dictated by how 
task-specific each layer is.


• Even on PTB-size data, BiLM pretraining yields the most 
general representations.


• Pretraining on related tasks helps


• More data helps even more!
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Bonus Slides



Probing Task Examples



Part-of-Speech Tagging



CCG Supertagging



Syntactic Constituency 
Ancestor Tagging

Parent

Grandparent

Great-Grandparent



Semantic Tagging

• Semantic tags abstract over redundant POS distinctions 
and disambiguate useful cases within POS tags.


• (1) Sarah bought herself a book


• (2) Sarah herself bought a book


• Same POS tag (Personal Pronoun), but different semantic 
function. (1) reflexive function, (2) emphasizing function



Preposition Supersense 
Disambiguation

• Classify a preposition's lexical semantic contribution 
(function), or the semantic role / relation it mediates (role). 


• Specialized kind of word sense disambiguation.



Preposition Supersense 
Disambiguation



Event Factuality

• Label predicates with the factuality of events they describe.

Event "leave" did not happen.

Event "leaving" happened.



Syntactic Chunking



Named Entity Recognition



Grammatical Error Detection



Conjunct Identification

• And the city decided to treat its guests more like [royalty] 
or [rock stars] than factory owners.



Two Types of  
Pairwise Relations

• Arc prediction tasks: Given two random tokens, identify 
whether a relation exists between them.


• Arc classification tasks: Given two tokens that are 
known to be related, identify what the relation is.



Syntactic Dependency  
Arc Prediction

Input Tokens

Label: True, there exists a relation



Syntactic Dependency  
Arc Prediction

Input Tokens

Label: True, there exists a relation



Syntactic Dependency  
Arc Prediction

Input Tokens

Label: False, there does not exist a relation



Syntactic Dependency  
Arc Classification

Input Tokens

?



Syntactic Dependency  
Arc Classification

Input Tokens

?

Label



Syntactic Dependency  
Arc Classification

?

Input Tokens



Syntactic Dependency  
Arc Classification

Input Tokens

Label



Semantic Dependencies



Coreference Relations



Setting Up Alternative 
Pretraining Objectives



Language Model Pretraining
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Language Model Pretraining
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Chunking Pretraining
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Chunking Pretraining
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Flexible Paradigm, Use Any Task!

!90



!91



!92


