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[McCann et al., 2017; Peters et al., 2018a; Devlin et al., 2019, inter alial

Contextual Word Representations
Are Extraordinarily Effective

e Contextual word representations (from contextualizers
like ELMo or BERT) work well on many NLP tasks.

e But why do they work so well?
e Better understanding enables principled enhancement.

* This work: studies a few questions about their
generalizability and transferability.



(1) Probing Contextual Representations

Question: Is the information necessary for a
variety of core NLP tasks linearly recoverable
from contextual word representations?

Answer: Yes, to a great extent! Tasks with
lower performance may require fine-
grained linguistic knowledge.



(2) How Does Transferabllity Vary”?

Question: How does transferability vary
across contextualizer layers?

Answer: First layer in LSTMs is the
most transferable. Middle layers for
transformers.



(3) Why Does Transferability Vary®

Question: Why does transferability
vary across contextualizer layers?

Answer: It depends on pretraining
task-specificity!



(4) Alternative Pretraining Objectives

Question: How does language model
pretraining compare to alternatives?

Answer: Even with 1 million tokens,
language model pretraining yields the
most transferable representations.

But, transferring between related tasks
does help.
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Probing Model Setup

* Contextualizer weights are always frozen.
* Results are from the highest-performing contextualizer layer.

* We use a linear probing model.
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Contextualizers Analyzed



[Peters et al., 2018a,b]
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|Peters et al., 2018a,b; Radford et al., 2018; Devlin et al., 2019]
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(1) Probing Contextual Representations

Question: Is the information necessary for a
variety of core NLP tasks linearly recoverable
from contextual word representations?

Answer: Yes, to a great extent! Tasks with
lower performance may require fine-
grained linguistic knowledge.
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Linear Probing Models Rival
Task-Specific Architectures
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But Linear Probing Models
Underperform on Some Tasks

e Tasks that linear model + contextual word representation
performs poorly may require more fine-grained linguistic
knowledge.

e |[n these cases, task-specific contextualization leads to
especially large gains. See the paper for more details.
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(2) How Does Transferabllity Vary”?

Question: How does transferability vary
across contextualizer layers?

Answer: First layer in LSTMs is the
most transferable. Middle layers for
transformers.
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Layerwise Patterns in Transterability
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(3) Why Does Transferability Vary®

Question: Why does transferability
vary across contextualizer layers?

Answer: It depends on pretraining
task-specificity!



L ayerwise Patterns
Dictated by Perplexity
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Perplexity
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L ayerwise Patterns
Dictated by Perplexity

Transformer-based ELMo (6-layer)
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(4) Alternative Pretraining Objectives

Question: How does language model
pretraining compare to alternatives?

Answer: Even with 1 million tokens,
language model pretraining yields the
most transferable representations.

But, transferring between related tasks
does help.



INnvestigating Alternatives to
. anguage Model Pretraining

e How does the language modeling as a pretraining
objective compare to explicitly supervised tasks?

e Pretrain ELMo (original)-architecture contextualizer on the
Penn Treebank, with a variety of different objectives.

e Evaluate how well the resultant representations transfer to
target (held-out) tasks.
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See Wang et al. (ACL 2019) "How to Get Past Sesame Street: Sentence-Level
Pretraining Beyond Language Modeling" for more tasks + multitasking.
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Also found by Saphra and Lopez (2019), check out poster 1402 on Wednesday!
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Online at: bit.ly/cwr-analysis-related

Some Related Work at NAACL

Wed. June 5, 10:30 - 12:00. ML & Syntax, Hyatt Exhibit Hall:

Understanding Learning Dynamics Of Language Models with
SVCCA. Naomi Saphra and Adam Lopez.

Structural Supervision Improves Learning of Non-Local
Grammatical Dependencies. Ethan Wilcox et al.

Analysis Methods in Neural Language Processing: A Survey,.
Yonatan Belinkov and James Gilass.

Wed. June 5, 16:15-16:30. Machine Learning, Nicollet B/C:

A Structural Probe for Finding Syntax in Word Representations.
John Hewitt and Christopher D. Manning.
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lakeaways

e Features from pretrained contextualizers are sufficient for
high performance on a broad set of tasks.

e Tasks with lower performance might require fine-grained
linguistic knowledge.

e | ayerwise patterns in transferability exist. Dictated by how
task-specific each layer is.

e Even on PTB-size data, BiLM pretraining yields the most
general representations.

e Pretraining on related tasks helps

» More data helps even more!

Code: http://nelsonliu. me/pag)er's/contextual -repr-analysis
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Probing lask Examples



Part-of-Speech Tagging

Soon _she _was running the office
RB PRPVBD VBG DT NN




CCG Supertagging

Soon she was running _ the office
S/S NP (S\NP)/NP NP _NP/N N _
(S\NP)/NP NP

S\NP g

S >

S



Syntactic Constituency
Ancestor Tagging

S

/N[P\ AD|VP /‘P\ Great-Grandparent
JJ NN NNS RB VBD Grandparent
IN Parent

Other stock indexes also fell on Monday



Semantic Tagging

Semantic tags abstract over redundant POS distinctions
and disambiguate useful cases within POS tags.

(1) Sarah bought herself a book
(2) Sarah herself bought a book

Same POS tag (Personal Pronoun), but different semantic
function. (1) reflexive function, (2) emphasizing function



Preposition Supersense
Disambiguation

e Classify a preposition's lexical semantic contribution
(function), or the semantic role / relation it mediates (role).

e Specialized kind of word sense disambiguation.



(1)

(2)

3)

Preposition Supersense
Disambiguation

I was booked for/DURATION 2 nights at/[.LOCUS this
hotel in/TIME Oct 2007 .

I went to/GOAL ohm after/EXPLANATION~»TIME
reading some of/QUANTITY~»WHOLE the reviews .

It was very upsetting to see this kind of/SPECIES
behavior especially in_front_of/LLOCUS
my/SOCIALREL~»GESTALT four year_old .



Event Factuality

e | abel predicates with the factuality of events they describe.

Event "leave" did not happen.

~~

(3) a. Jo didn’t remember to leave.
b. Jo didn’t remember leaving.

Event "leaving" happened./



Syntactic Chunking

INP He | [VP ] [INP the current account deficit | [VP
] [PP to ] [NP only # 1.8 billion ] [PP in ] [NP
September | .



Named Entity Recognition

[ORG U.N. ] official [PER Ekeus ] heads for [LOC ].



Grammatical Error Detection

+o + - o + o+ + - +
I like to playing the guitar and sing very louder .



Conjunct Identification

* And the city decided to treat its guests more like [royalty]
or [rock stars] than factory owners.



Two Types of
Pairwise Relations

* Arc prediction tasks: Given two random tokens, identify
whether a relation exists between them.

e Arc classification tasks: Given two tokens that are
known to be related, identify what the relation is.



Syntactic Dependency
Arc Prediction

OBJ

DET
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Syntactic Dependency
Arc Prediction

OBJ
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Syntactic Dependency
Arc Prediction

OBJ

. i
r I s
We ceal ! the v cheese ' sandwich

Input Tokens

Label: False, there does not exist a relation



Syntactic Dependency
Arc Classification
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Syntactic Dependency
Arc Classification
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Syntactic Dependency
Arc Classification

OBJ

MOD

Input Tokens



Syntactic Dependency
Arc Classification

OBJ Label

Input Tokens



Semantic Dependencies

Lagent}

ﬁag““ﬁ [

John wanted

theme:

N

to

fe=

buy apples

&_and_c)

and

\

oranges



Coreference Relations

—
“I| voted for Nader because he was most

‘\
aligned with my values,” she said.




Setting Up Alternative
Pretraining Objectives



| anguage Model Pretraining

Linear
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Contextual Word
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| anguage Model Pretraining

Labels to Predict
(e.g., Language
Modeling)

Linear
Projection

Elianti <EOS>
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Chunking Pretraining

Linear
Projection
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Chunking Pretraining

Labels to Predict B-NP
(e.g., Chunking)

Linear
Projection

-— — - - - — — —— — = —— w— -— e e e - - - e - e e - - - - - - e - - - e - - o]

Contextual Word
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Flexible Paradigm, Use Any Task!

Contextual Word ’m ’m
Representations

Contextualizer

f f f
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Linear Projection

Word Pair

Representations (OOOQOO) (OOOOOO)(OOOOOO)

(w1 we; w O we)

Contextual Word
Representations

Contextualizer

f f f f

Input Tokens Ms. Haag plays Elianti
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Labels to Predict _ _
(e.g., syntactic COmpOund NSuU bj dObj

dependency relations)

Linear Projection

Word Pair

Representations @OOOO@@OOOO@@OOOO@

(w1 ; wo; w1 © wa

Contextual Word
Representations

Contextualizer

f f f f

Input Tokens Ms. Haag plays Elianti
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