
Linguistic Knowledge and
Transferability of
Contextual Representations

Nelson F.
Liu

UWNLP

NAACL 2019—June 3, 2019

Matt
Gardner

Noah A.
Smith

Matthew E.
Peters

Yonatan
Belinkov

�1

Thanks. Today, I'll be talking about the linguistic knowledge and transferability of contextual word representations.

This is joint work with Matt Gardner, Yonatan Belinkov, Matt Peters, and Noah Smith.

Contextual Word Representations
Are Extraordinarily Effective

• Contextual word representations (from contextualizers
like ELMo or BERT) work well on many NLP tasks.

• But why do they work so well?

• Better understanding enables principled enhancement.

• This work: studies a few questions about their
generalizability and transferability.

[McCann et al., 2017; Peters et al., 2018a; Devlin et al., 2019, inter alia]

!2

Over the last year, contextual word representations from contextualizers like ELMo and BERT have pushed NLP to new heights across a diverse set of tasks.

However, it's still unclear why they work so well, or what their abilities and limitations are. Better understanding these models is a critical first step towards their principled
enhancement.

In this work, we ask and answer a few questions about the generalizability and transferability of contextual word representations.

I'll start off the talk by giving a high-level summary of our findings, and I'll then dive deeper into more details.

(1) Probing Contextual Representations

Question: Is the information necessary for a
variety of core NLP tasks linearly recoverable
from contextual word representations?

Answer: Yes, to a great extent! Tasks with
lower performance may require fine-
grained linguistic knowledge.

!3

One question we looked at is whether the information necessary for a variety of core NLP tasks is linearly recoverable from only contextual word representations.

At a first approximation, the answer appears to be yes! However, we find that performance on some tasks is lacking, perhaps because they require fine-grained linguistic
knowledge.

Question: How does transferability vary
across contextualizer layers?

Answer: First layer in LSTMs is the
most transferable. Middle layers for
transformers.

!4

(2) How Does Transferability Vary?

We also studied how the transferability of contextual word representations varies across contextualizer layers.

We found that the first layer of LSTMs is consistently the most transferable. Transformers, on the other hand, have no such most-transferable layer---although the middle
layers tend to be more transferable than others.

(3) Why Does Transferability Vary?
Question: Why does transferability
vary across contextualizer layers?

Answer: It depends on pretraining
task-specificity!

!5

We also look at why transferability varies across contextualizer layers, and we find that higher layers in LSTMs are more task-specific and thus less transferable.
Transformer layers do not show the same monotonic trend, but in both cases, the topmost layer is the most task-specific.

(4) Alternative Pretraining Objectives

Question: How does language model
pretraining compare to alternatives?

Answer: Even with 1 million tokens,
language model pretraining yields the
most transferable representations.

But, transferring between related tasks
does help.

!6

Lastly, we also looked into the source of the generalizability of language-model derived contextual word representations. In particular, do they work well only because
they see a lot of data? Or is language modeling unto itself also a good objective?

We find that language modeling yields representations that are more transferable than eleven supervised alternatives that we studied. However, we do find that
pretraining on related tasks helps.

Probing Models
[Shi et al., 2016; Adi et al., 2017]

!7

Now that I've given a summary of the work, I'll go into more detail about each part.

I'll start by talking about probing models, which we use to study contextual word representations.

I'll walk through how we use them.

Probing Models
[Shi et al., 2016; Adi et al., 2017]

!8

First, we start off with some input tokens.

Probing Models
[Shi et al., 2016; Adi et al., 2017]

!9

Then, we use some sort of pretrained contextualizer, like ELMo or BERT, to get contextual word representations for each token in our input.

Probing Models
[Shi et al., 2016; Adi et al., 2017]

!10

The probing model's input is the contextual word representation for a single token.

Probing Models
[Shi et al., 2016; Adi et al., 2017]

!11

And it's trained to predict linguistic features of interest about that token from only its contextual word representation.

The key idea is that we can use the performance of the probing model as a proxy for how predictive our input representations are of the linguistic features of interest.

Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]

We also looked at probing models that predict labels between pairs of words, which we call pairwise probing.

Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]

!13

Again, we start off with a set of input tokens...

Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]

!14

...and we get contextual word representations for each of them.

Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]

!15

Now, to predict some linguistic feature between two tokens, we combine their contextual word representations. In this example, we're combining the contextual word
representations of Ms. and Haag.

Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]

!16

This combined representation is now the input to our probing model,

Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]

!17

and the probing model is trained to predict information about the relationship between the tokens, for instance, their syntactic dependency relation.

Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]

!18

We can probe arbitrary pairs like "plays" and the period here.

Pairwise Probing
[Belinkov, 2018; Blevins et al., 2018; Tenney et al., 2019]

!19

To be clear, in this setting, the only trainable parameters are still in the probing model. When we combine contextual word representations to form word-pair
representations, we do so without using any extra parameters.

• Contextualizer weights are always frozen.

• Results are from the highest-performing contextualizer layer.

• We use a linear probing model.

Probing Model Setup

!20

In terms of probing model setup, we always freeze the contextualizer weights---only the probing model parameters are updated during training.

In addition, we probe each contextualizer layer, and the results are from the highest-performing layer (unless otherwise stated).

Lastly, we use a linear probing model, which limits its capacity and minimizes the number of external parameters used in our study.

Contextualizers Analyzed

!21

With regard to the contextualizers that we study, we look at three main families.

Contextualizers Analyzed
ELMo

Bidirectional language
model (BiLM) pretraining
on 1B Word Benchmark

2-layer

LSTM

(ELMo original)

4-layer

LSTM

(ELMo 4-layer)

6-layer

Transformer

(ELMo
transformer)

[Peters et al., 2018a,b]

!22

First is ELMo, which is a bidirectional language model. We look at 3 ELMo models, one with a 2-layer LSTM, one with a 4-layer LSTM, and one with a 6-layer transformer.

Contextualizers Analyzed
ELMo

Bidirectional language
model (BiLM) pretraining
on 1B Word Benchmark

OpenAI Transformer
Left-to-right language
model pretraining on
uncased BookCorpus

12-layer
transformer

2-layer

LSTM

(ELMo original)

4-layer

LSTM

(ELMo 4-layer)

6-layer

Transformer

(ELMo
transformer)

[Peters et al., 2018a,b; Radford et al., 2018]

!23

We also look at the OpenAI transformer, which is a left-to-right language model. This is a 12-layer transformer, and it's also known as GPT version 1.

24-layer
transformer

(BERT large)

Contextualizers Analyzed
ELMo

Bidirectional language
model (BiLM) pretraining
on 1B Word Benchmark

OpenAI Transformer
Left-to-right language
model pretraining on
uncased BookCorpus

BERT (cased)
Masked language model
pretraining on
BookCorpus + Wikipedia

12-layer
transformer

(BERT base)

12-layer
transformer

2-layer

LSTM

(ELMo original)

4-layer

LSTM

(ELMo 4-layer)

6-layer

Transformer

(ELMo
transformer)

[Peters et al., 2018a,b; Radford et al., 2018; Devlin et al., 2019]

!24

Lastly, we look at the two BERT cased models, which are pretrained on masked language modeling and next sentence prediction. We look at BERT base, which is a 12-
layer transformer, and BERT-large, which is a 24-layer transformer.

Note that you can't make fair comparisons about pretraining strategies for contextualizers that aren't in the same row, because they aren't trained on the same data.
So, it's fair to compare any of the three ELMo models against each other, but it's not fair to compare them to the BERT models.

(1) Probing Contextual Representations

Question: Is the information necessary for a
variety of core NLP tasks linearly recoverable
from contextual word representations?

Answer: Yes, to a great extent! Tasks with
lower performance may require fine-
grained linguistic knowledge.

!25

Coming back to our first question, I'll talk about the results from probing.

Examined 17 Diverse Probing Tasks

• Part-of-Speech
Tagging

• CCG Supertagging

• Semantic Tagging

• Preposition

supersense
disambiguation

• Event Factuality

• Syntactic
Constituency
Ancestor Tagging

!26

• Syntactic
Chunking

• Named entity
recognition

• Grammatical
error detection

• Conjunct
identification

• Syntactic Dependency
Arc Prediction

• Syntactic Dependency
Arc Classification

• Semantic Dependency
Arc Prediction

• Semantic Dependency
Arc Classification

• Coreference Arc
Prediction

To better characterize the strengths and limitations of contextual word representations, we built a suite of 17 diverse probing tasks.

Linear Probing Models Rival
Task-Specific Architectures

• Part-of-Speech
Tagging

• CCG Supertagging

• Semantic Tagging

• Preposition

supersense
disambiguation

• Event Factuality

• Syntactic
Constituency
Ancestor Tagging

!27

• Syntactic
Chunking

• Named entity
recognition

• Grammatical
error detection

• Conjunct
identification

• Syntactic Dependency
Arc Prediction

• Syntactic Dependency
Arc Classification

• Semantic Dependency
Arc Prediction

• Semantic Dependency
Arc Classification

• Coreference Arc
Prediction

8 of these tasks are established tasks, in the sense that there's a prior state-of-the-art to compare to.

On 7 of these 8 tasks, we see that a linear probing model trained on top of frozen contextual word representations is competitive with prior state-of-the-art, task-specific
models that don't use contextual word representations.

CCG Supertagging

Ac
cu

ra
cy

0

25

50

75

100

GloVe ELMo

(original)

ELMo

(transformer)

OpenAI

Transformer

BERT

(large)

SOTA

!28

For instance, one of the tasks we looked at was CCG supertagging.

CCG Supertagging

Ac
cu

ra
cy

0

25

50

75

100

GloVe ELMo

(original)

ELMo

(transformer)

OpenAI

Transformer

BERT

(large)

SOTA

71.58

!29

We train a probing model on top of GloVe vectors as a baseline.

CCG Supertagging

Ac
cu

ra
cy

0

25

50

75

100

GloVe ELMo

(original)

ELMo

(transformer)

OpenAI

Transformer

BERT

(large)

SOTA

94.28
82.69

92.6893.31

71.58

!30

Probing models that use contextual word representations do much better than the GloVe baseline, with BERT large reaching an accuracy of 94.28.

CCG Supertagging

Ac
cu

ra
cy

0

25

50

75

100

GloVe ELMo

(original)

ELMo

(transformer)

OpenAI

Transformer

BERT

(large)

SOTA

94.794.28
82.69

92.6893.31

71.58

!31

This is surprisingly close to the prior state-of-the-art without pretraining, which achieved an accuracy of 94.7 .

So, contextual word representations clearly contain features that are predictive of CCG supertags.

Event Factuality

Pe
ar

so
n

C
or

re
la

tio
n

(r)
 x

 1
00

0

25

50

75

100

GloVe ELMo

(original)

ELMo

(transformer)

OpenAI

Transformer

BERT

(large)

SOTA

!32

Event Factuality

Pe
ar

so
n

C
or

re
la

tio
n

(r)
 x

 1
00

0

25

50

75

100

GloVe ELMo

(original)

ELMo

(transformer)

OpenAI

Transformer

BERT

(large)

SOTA

77.1076.2574.0370.8873.20

49.70

!33

We reach a similar conclusion for the more semantic task of event factuality, where the model is given a predicate and must predict whether it happened or not.

But Linear Probing Models
Underperform on Some Tasks

• Tasks that linear model + contextual word representation
performs poorly may require more fine-grained linguistic
knowledge.

• In these cases, task-specific contextualization leads to
especially large gains. See the paper for more details.

!34

However, we also saw that, when linear probing models trained on top of contextual word representations failed to do well on tasks, they seem to require fine-grained
linguistic knowledge.

Named Entity Recognition

F1

0

25

50

75

100

GloVe ELMo

(original)

ELMo

(transformer)

OpenAI

Transformer

BERT

(large)

SOTA

!35

For instance, we looked at the task of named entity recognition, or NER.

Named Entity Recognition

F1

0

25

50

75

100

GloVe ELMo

(original)

ELMo

(transformer)

OpenAI

Transformer

BERT

(large)

SOTA

53.22

!36

So, once again, we run our GloVe baseline.

Named Entity Recognition

F1

0

25

50

75

100

GloVe ELMo

(original)

ELMo

(transformer)

OpenAI

Transformer

BERT

(large)

SOTA

84.44

58.14

81.2182.85

53.22

!37

We also see in this case that contextual word representations are significantly more predictive than GloVe.

Named Entity Recognition

F1

0

25

50

75

100

GloVe ELMo

(original)

ELMo

(transformer)

OpenAI

Transformer

BERT

(large)

SOTA

91.38
84.44

58.14

81.2182.85

53.22

!38

but these numbers are still quite far from the state-of-the-art.

We might see a larger gap here because entities are rather rare in text, and these contextual word representations probably don't capture too much about them simply
because it isn't useful enough for their pretraining task of predicting the next word or a masked-out word.

Question: How does transferability vary
across contextualizer layers?

Answer: First layer in LSTMs is the
most transferable. Middle layers for
transformers.

!39

(2) How Does Transferability Vary?

We also looked at layerwise patterns in transferability---what sort of variation do we see, and why do we see it?

Layerwise Patterns in Transferability

!40

So, starting off...

Layerwise Patterns in Transferability
LSTM-based Contextualizers

ELMo (original) ELMo (4-layer)

!41

TasksTasks

We looked at LSTM-based contextualizers, which are the 2-layer and 4-layer LSTM ELMo models.

In the heatmap, each row is a layer of the contextualizer, and each column is a probing task.

Layerwise Patterns in Transferability
LSTM-based Contextualizers

ELMo (original) ELMo (4-layer)

!42

TasksTasks

The heatmap for LSTM-based contextualizers shows a marked dark band across the 1st layer outputs---the 1st layer is consistently the strongest on probing tasks, and
thus it's the most transferable.

Layerwise Patterns in Transferability
LSTM-based Contextualizers

Transformer-based Contextualizers

ELMo (original) ELMo (4-layer)

!43

TasksTasks

In contrast, if we look at transformer-based contextualizers...

Layerwise Patterns in Transferability
LSTM-based Contextualizers

Transformer-based Contextualizers

ELMo (original)

ELMo (transformer)

ELMo (4-layer)

OpenAI Transformer

BERT (base, cased) BERT (large, cased)

!44

Tasks

TasksTasks

Tasks

Tasks Tasks

We see that there is no such clear dark band---no one layer is the most transferable. Instead, we see wider dark bands around the middle layers.

This points to concrete differences in how LSTMs and transformers store information, and this would be an interesting direction for future work.

(3) Why Does Transferability Vary?
Question: Why does transferability
vary across contextualizer layers?

Answer: It depends on pretraining
task-specificity!

!45

Looking at layerwise performance on the tasks, we also didn't see higher layers doing better with higher-level semantics. So, what dictates these patterns?

Pe
rp

le
xi

ty
0

1000

2000

3000

4000

5000

6000

7000

8000

Layer 0 Layer 1 Layer 2

235
920

7026

Layerwise Patterns
Dictated by Perplexity

!46

LSTM-based ELMo (original)

Outputs of higher LSTM layers are
better for language modeling

(have lower perplexity)

In short, we see perplexity---since these contextualizers are pretrained on language modeling, the higher layers are tuned toward optimizing perplexity.

Past work has shown that representations from higher-level layers seem to do better on higher-level tasks. Instead, it seems likely that higher-level layers simply focus on
encoding what's useful for their pretraining task. It just happens that certain high-level semantic phenomena are incidentally useful for the contextualizer's pretraining
task, leading to their presence in higher layers.

Layerwise Patterns
Dictated by Perplexity

LSTM-based ELMo (4-layer)

!47

Pe
rp

le
xi

ty
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

195

1013

23632398

4204 Outputs of higher LSTM layers are
better for language modeling

(have lower perplexity)

We see a similar trend in 4-layer LSTMs

Pe
rp

le
xi

ty
0

100

200

300

400

500

600

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

91

523

314
374

448

295

546

Layerwise Patterns
Dictated by Perplexity

Transformer-based ELMo (6-layer)

!48

Although transformers do not show the same monotonic trend.

(4) Alternative Pretraining Objectives

Question: How does language model
pretraining compare to alternatives?

Answer: Even with 1 million tokens,
language model pretraining yields the
most transferable representations.

But, transferring between related tasks
does help.

!49

Lastly, to better understand what makes language-model derived contextual word representations so transferable, we study alternatives to language model pretraining.

Investigating Alternatives to
Language Model Pretraining

• How does the language modeling as a pretraining
objective compare to explicitly supervised tasks?

• Pretrain ELMo (original)-architecture contextualizer on the
Penn Treebank, with a variety of different objectives.

• Evaluate how well the resultant representations transfer to
target (held-out) tasks.

!50

In particular, language modeling is useful because it doesn't require any labeled data, so you can pretrain on massive datasets. But, is its self-supervised nature the only
benefit? Or is language modeling just a good pretraining objective unto itself, disregarding the fact that we can get lots of data for it?

To test this, we pretrain 2-layer LSTM contextualizers on the Penn Treebank, with a variety of different objectives. We then evaluate how well each of the resultant
representations transfers to target held-out tasks to compare language modeling to eleven supervised alternatives.

To be clear, this is a controlled experiment because we use the same pretraining method, contextualizer architecture, and dataset. The only thing that changes between
experiments is the type of supervision that the contextualizer is pretrained on.

Ac
cu

ra
cy

0
10
20
30
40
50
60
70
80
90

100

Pretraining Task

GloVe Randomly

Initialized

Chunking Semantic

Dependency

Classification

CCG Syntactic

Dependency

Classification

BiLM BiLM

(1B Bench)

Average Across Target Tasks

!51

So moving to our results, I'll first show the average performance across target tasks when pretraining on a variety of objectives. See the paper for the full results.

Ac
cu

ra
cy

0
10
20
30
40
50
60
70
80
90

100

Pretraining Task

GloVe Randomly

Initialized

Chunking Semantic

Dependency

Classification

CCG Syntactic

Dependency

Classification

BiLM BiLM

(1B Bench)

60.55

Average Across Target Tasks

!52

As a baseline, we took the average performance when we train our probing model on top of GloVe.

Ac
cu

ra
cy

0
10
20
30
40
50
60
70
80
90

100

Pretraining Task

GloVe Randomly

Initialized

Chunking Semantic

Dependency

Classification

CCG Syntactic

Dependency

Classification

BiLM BiLM

(1B Bench)

54.42
60.55

Average Across Target Tasks

!53

Inspired by recent work showing that contextualizers with random weights actually do quite well, our second baseline is a randomly-initialized, untrained model.

Ac
cu

ra
cy

0
10
20
30
40
50
60
70
80
90

100

Pretraining Task

GloVe Randomly

Initialized

Chunking Semantic

Dependency

Classification

CCG Syntactic

Dependency

Classification

BiLM BiLM

(1B Bench)

66.5363.6066.0664.6763.96
54.42

60.55

Average Across Target Tasks

!54

Now, when we pretrain on the Penn Treebank with different supervision signals, we see that any sort of pretraining does better than the GloVe and randomly initialized
baselines. Among the eleven supervised pretraining tasks that we considered, bidirectional language modeling was the most transferable on average.

Ac
cu

ra
cy

0
10
20
30
40
50
60
70
80
90

100

Pretraining Task

GloVe Randomly

Initialized

Chunking Semantic

Dependency

Classification

CCG Syntactic

Dependency

Classification

BiLM BiLM

(1B Bench)

79.05

66.5363.6066.0664.6763.96
54.42

60.55

Average Across Target Tasks

!55
See Wang et al. (ACL 2019) "How to Get Past Sesame Street: Sentence-Level
Pretraining Beyond Language Modeling" for more tasks + multitasking.

Just for reference, here's the performance when you pretrain the bidirectional language model on the 1 Billion Word Benchmark.

So, while training on more data is a large part of why language-model derived contextual word representations work well, bidirectional language modeling unto itself is
also just a reasonably good task, at least compared to the alternatives we considered. Alex Wang et al have a paper at ACL this year that also supports the use of
language modeling, and they see further gains from multitasking training as well.

Ac
cu

ra
cy

0
10
20
30
40
50
60
70
80
90

100

Pretraining Task

GloVe Randomly

Initialized

Chunking Semantic

Dependency

Classification

CCG Syntactic

Dependency

Classification

BiLM BiLM

(1B Bench)

86.8690.9888.1187.7587.57

70.6272.74

Target Task: Syntactic
Dependency Classification (EWT)

!56

Pretraining on related tasks is better than BiLM

Looking at one task in particular, syntactic dependency arc classification, we see that pretraining on related tasks, which are the bolded bars, yields better performance
than bidirectional language modeling. So, related task-transfer does help.

Ac
cu

ra
cy

0
10
20
30
40
50
60
70
80
90

100

Pretraining Task

GloVe Randomly

Initialized

Chunking Semantic

Dependency

Classification

CCG Syntactic

Dependency

Classification

BiLM BiLM

(1B Bench)

93.01
86.8690.9888.1187.7587.57

70.6272.74

Target Task: Syntactic
Dependency Classification (EWT)

!57

But, BiLM on more data is even better.

However, just pretraining your bidirectional language model on more data yields even larger gains.

Ac
cu

ra
cy

0
10
20
30
40
50
60
70
80
90

100

Layer 0 Layer 1 Layer 2

77.7279.05

64.40 65.8265.9166.53

BiLM trained on PTB BiLM trained on 1B Word Benchmark

PTB-trained BiLM vs ELMo

!58
Also found by Saphra and Lopez (2019), check out poster 1402 on Wednesday!

We also saw that layer 0 of the bidirectional language model is surprisingly performant---it does better than all other layers from all other pretraining tasks, and even
surpasses layer 0 of a bidirectional language model trained on the 1 Billion Word Benchmark, which is orders of magnitude more data. This indicates that bidirectional
language models learn lexical information first, and this drives its generalizability.

Naomi Saphra came to the same conclusion in her work, which studies the learning dynamics of language models---be sure to check out poster 1402 on Wednesday.

Some Related Work at NAACL

Wed. June 5, 10:30 – 12:00. ML & Syntax, Hyatt Exhibit Hall:
Understanding Learning Dynamics Of Language Models with
SVCCA. Naomi Saphra and Adam Lopez.
Structural Supervision Improves Learning of Non-Local
Grammatical Dependencies. Ethan Wilcox et al.

Analysis Methods in Neural Language Processing: A Survey.
Yonatan Belinkov and James Glass.

Wed. June 5, 16:15–16:30. Machine Learning, Nicollet B/C:
A Structural Probe for Finding Syntax in Word Representations.
John Hewitt and Christopher D. Manning.

!59

Online at: bit.ly/cwr-analysis-related

Beyond the Saphra paper that I just mentioned, there's a bunch of other related work at NAACL that share our goal of understanding language models and their derived
contextual word representations. If you found this talk interesting, you might find these presentations interesting as well.

There's a link to this slide above.

http://bit.ly/cwr-analysis-related

Takeaways

• Features from pretrained contextualizers are sufficient for
high performance on a broad set of tasks.

• Tasks with lower performance might require fine-grained
linguistic knowledge.

• Layerwise patterns in transferability exist. Dictated by how
task-specific each layer is.

• Even on PTB-size data, BiLM pretraining yields the most
general representations.

• Pretraining on related tasks helps

• More data helps even more!

http://nelsonliu.me/papers/contextual-repr-analysisCode:
!60

So, in terms of takeaways, in this study we found that:

1) Features from contextual word representations are sufficient for high performance on a broad set of tasks, but fine-grained linguistic knowledge is not linearly
recoverable.

2) Furthermore, patterns in layerwise transferability exist, and they can be explained by variations in how task-specific each of the layers are. We also find that higher-
level layers don't necessarily encode higher-level semantic information, but instead encode things that are useful for their pretraining task.

3) Lastly, even on Penn Treebank-size data, bidirectional language model pretraining yields representations that are the most transferable on average. We do see that
pretraining on related tasks gives the best results for individual target tasks, but ultimately training on more data yields even bigger gains.

Takeaways

http://nelsonliu.me/papers/contextual-repr-analysisCode:

Thanks!

Questions?

• Features from pretrained contextualizers are sufficient for
high performance on a broad set of tasks.

• Tasks with lower performance might require fine-grained
linguistic knowledge.

• Layerwise patterns in transferability exist. Dictated by how
task-specific each layer is.

• Even on PTB-size data, BiLM pretraining yields the most
general representations.

• Pretraining on related tasks helps

• More data helps even more!

!61

And that concludes my talk. Thanks for listening, and I'll take questions now.

Repeat the question when you get it!

Bonus Slides

Probing Task Examples

Part-of-Speech Tagging

CCG Supertagging

Syntactic Constituency
Ancestor Tagging

Parent

Grandparent

Great-Grandparent

Semantic Tagging

• Semantic tags abstract over redundant POS distinctions
and disambiguate useful cases within POS tags.

• (1) Sarah bought herself a book

• (2) Sarah herself bought a book

• Same POS tag (Personal Pronoun), but different semantic
function. (1) reflexive function, (2) emphasizing function

Preposition Supersense
Disambiguation

• Classify a preposition's lexical semantic contribution
(function), or the semantic role / relation it mediates (role).

• Specialized kind of word sense disambiguation.

Preposition Supersense
Disambiguation

Event Factuality

• Label predicates with the factuality of events they describe.

Event "leave" did not happen.

Event "leaving" happened.

Syntactic Chunking

Named Entity Recognition

Grammatical Error Detection

Conjunct Identification

• And the city decided to treat its guests more like [royalty]
or [rock stars] than factory owners.

Two Types of
Pairwise Relations

• Arc prediction tasks: Given two random tokens, identify
whether a relation exists between them.

• Arc classification tasks: Given two tokens that are
known to be related, identify what the relation is.

Syntactic Dependency
Arc Prediction

Input Tokens

Label: True, there exists a relation

Syntactic Dependency
Arc Prediction

Input Tokens

Label: True, there exists a relation

Syntactic Dependency
Arc Prediction

Input Tokens

Label: False, there does not exist a relation

Syntactic Dependency
Arc Classification

Input Tokens

?

Syntactic Dependency
Arc Classification

Input Tokens

?

Label

Syntactic Dependency
Arc Classification

?

Input Tokens

Syntactic Dependency
Arc Classification

Input Tokens

Label

Semantic Dependencies

Coreference Relations

Setting Up Alternative
Pretraining Objectives

Language Model Pretraining

!86

Language Model Pretraining

!87

Chunking Pretraining

!88

Chunking Pretraining

!89

Flexible Paradigm, Use Any Task!

!90

!91

!92

