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Abstract

Do question answering (QA) modeling im-
provements (e.g., choice of architecture and
training procedure) hold consistently across
the diverse landscape of QA benchmarks? To
study this question, we introduce the notion of
concurrence—two benchmarks have high con-
currence on a set of modeling approaches if
they rank the modeling approaches similarly.
We measure the concurrence between 32 QA
benchmarks on a set of 20 diverse modeling
approaches and find that human-constructed
benchmarks have high concurrence amongst
themselves, even if their passage and ques-
tion distributions are very different. Surpris-
ingly, even downsampled human-constructed
benchmarks (i.e., collecting less data) and
programmatically-generated benchmarks (e.g.,
cloze-formatted examples) have high concur-
rence with human-constructed benchmarks.
These results indicate that, despite years of in-
tense community focus on a small number of
benchmarks, the modeling improvements stud-
ied hold broadly.

1 Introduction

The NLP community has created a diverse land-
scape of extractive question answering (QA)
benchmarks—their context passages may come
from different sources, their questions may focus
on different phenomena or be written by different
populations, or other aspects of the data collection
process may differ. Driven to improve benchmark
performance, researchers have proposed a variety
of QA modeling approaches. However, not all
benchmarks receive equal attention from the com-
munity (Koch et al., 2021); many QA modeling
approaches are developed on a small handful of
benchmarks, especially those with popular leader-
boards (e.g., SQuAD; Rajpurkar et al., 2016). As
a result, it is conceivable that some modeling im-
provements may not hold because they are (perhaps
inadvertently) benchmark-specific, while others

70 80 90
70

75

80

85

90
CBT (NE)

r = 0.97
 = 0.88

r = 0.97
 = 0.88

70 80 90

60

70

80
EM

Downsampled SQuAD (20K)

r = 1.00
 = 0.94

r = 1.00
 = 0.94

70 80 90

60

65

70

MRQA NaturalQuestions

r = 0.98
 = 0.84

r = 0.98
 = 0.84

70 80 90

45

50

55

60

EM

MRQA NewsQA

r = 0.98
 = 0.87

r = 0.98
 = 0.87

SQuAD 1.1 EM
non-pretrained models pre-trained models

Figure 1: Two benchmarks have high concurrence
if they rank a set of modeling approaches similarly.
Surprisingly, we find that human-constructed bench-
marks (e.g., SQuAD, NaturalQuestions) have high con-
currence with other human-constructed benchmarks,
downsampled human-constructed benchmarks, and
even programmatically-generated cloze benchmarks
(e.g., the Children’s Book Test; CBT). In addition, we
are able to construct synthetic benchmarks that have
high concurrence with human-constructed benchmarks
despite lacking natural language passages or questions.

(e.g., pre-training on more data) hold more broadly.

In this work, we evaluate whether improvements
from modeling approaches hold (e.g., choices in
model architecture or training procedure)—if a par-
ticular modeling approach improves performance
when trained and evaluated on one benchmark,
does it also improve performance on others? Al-
though much existing work studies whether sys-
tems generalize (i.e., a model with a particular set
of parameters; Jia and Liang, 2017; Talmor and
Berant, 2019; Miller et al., 2020), research value
often comes not from the systems themselves (e.g.,
model weights), but from the underlying ideas,
techniques, and approaches. We study the com-
paratively under-investigated question of whether
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such modeling approaches generalize.
To study whether modeling improvements hold

across benchmarks, we introduce the notion of con-
currence. We say that two benchmarks have high
concurrence on a set of modeling approaches if
they rank the modeling approaches similarly. To as-
sess whether modeling improvements hold across
the space of QA benchmarks, we measure the con-
currence between 32 diverse QA benchmarks on a
testbed of 20 representative modeling approaches
introduced between 2016 and 2020.

Overall, we find that benchmarks that differ
substantially still often have high concurrence.
Human-constructed benchmarks (e.g., SQuAD and
MRQA NaturalQuestions) have high concurrence
with each other, despite differences in crowdsourc-
ing setups, passage and question distributions, and
even linguistic phenomena of focus (§3).

How different can a benchmark be, while
still maintaining high concurrence with human-
constructed benchmarks? In §4.1, we investigate
the role of training dataset size by measuring con-
currence with downsampled training datasets (e.g.,
using 20K SQuAD training examples rather than
the full 88K). We find that downsampled training
datasets are sufficient for high concurrence with
other human-constructed benchmarks. In §4.2, we
measure concurrence between human-constructed
and programmatically-generated benchmarks (e.g.,
cloze-formatted or synthetic) to better understand
the importance of human-written questions and pas-
sages. We find that cloze-formatted benchmarks
have high concurrence with human-constructed
benchmarks, so human-written questions and pas-
sages are not strictly necessary for concurrence.
However, programmatically-generated synthetic
benchmarks (e.g., the bAbI task suite) have low
concurrence. Having found this breaking point
of low concurrence, we construct two minimal
synthetic benchmarks that achieve high concur-
rence with human-constructed benchmarks, de-
spite lacking linguistic structure. Intuitively, the
benchmarks that concur with human-constructed
benchmarks are those that require model capabili-
ties that are also useful for better performance on
human-constructed benchmarks (e.g., identifying
paraphrase and lexical overlap; §4.3-4.5).

Our results have several implications for the fu-
ture development of benchmarks and modeling ap-
proaches. To summarize:

1. Human-constructed benchmarks have high

concurrence with each other on our testbed
of 20 modeling approaches. The model-
ing approaches studied are not particularly
benchmark-specific and that their modeling
improvements largely hold across different
benchmarks, despite intense community focus
on a small number of benchmarks. This is
especially true of recent modeling improve-
ments driven by better pre-training, which is
largely downstream benchmark-agnostic.

2. Many benchmarks require reasoning over
predicate-argument structure (e.g., SQuAD,
NewsQA, NaturalQuestions), and improve-
ments on these benchmarks also transfer to
more specialized benchmarks (e.g., HotpotQA
or MRQA DROP) because (1) almost all
benchmarks involve reasoning over predicate-
argument structure and/or (2) better reason-
ing over predicate-argument structure is corre-
lated with improvements on other phenomena.

3. Human-constructed benchmarks are not
strictly necessary for improving performance
on other human-constructed benchmarks.
Synthetic benchmarks may be useful tools for
isolating, understanding, and improving on
particular model capabilities.

4. Downsampling benchmarks to as few as 10K
training examples does not significantly af-
fect concurrence, especially since recent pre-
trained modeling approaches have greater
sample efficiency. We recommend the com-
munity build benchmarks that are smaller but
more challenging (e.g., harder/more expensive
to label per-example).

5. Since human-constructed benchmarks have
high concurrence amongst themselves, we en-
courage researchers to seek diversity and build
benchmarks that explore qualitatively differ-
ent modeling capabilities that push research
in new directions.

2 Measuring Concurrence

Informally, we say that two benchmarks have high
concurrence on a set of modeling approaches if the
two benchmarks rank the modeling approaches sim-
ilarly. We compare the performance of a modeling
approach when trained and tested on one bench-
mark with its performance when trained and tested
on another benchmark—we use each benchmark’s
original i.i.d. train-test split, so all evaluation is in-
domain. Repeating this process for many modeling



approaches, we can assess whether performance
gains between modeling approaches are generally
preserved when moving between benchmarks.

Formally, define a benchmark B as a pair of
datasets (Dtrain, Dtest), where Dtrain ⊆ X × Y and
Dtest ⊆ X × Y for an input space X and an output
space Y . A system is a function s : X → Y (i.e., a
trained model with a particular set of parameters).
In contrast, a modeling approach (i.e., a neural
architecture coupled with a training procedure) is
a function a that takes in a training dataset Dtrain
and outputs a system. Let EVAL denote an evalua-
tion function, where EVAL(a,B) returns the perfor-
mance (under a given evaluation function, e.g., ex-
act match) of a modeling approach a when trained
on the train split of B and tested on the test split of
B. Finally, CONCUR(B1, B2;A, EVAL) is the con-
currence between the benchmarks B1 and B2 with
respect to a set of modeling approaches A and the
evaluation function EVAL. Let a ∼ uniform(A),
where uniform(A) denotes the uniform distribu-
tion over the set of modeling approaches A. Defin-
ing the random variables P1 = EVAL(a,B1) and
P2 = EVAL(a,B2), we finally define

CONCUR(B1, B2;A, EVAL) = CORR(P1, P2) ,

where CORR is some correlation function.
We use the SQuAD exact match (EM) metric as

our evaluation function EVAL, and we consider the
Pearson correlation coefficient (r) and the Kendall
rank correlation coefficient (τ ) as our correlation
functions CORR. The former measures whether the
relationship between model performance on the
two benchmarks is approximately linear, whereas
the latter measures whether pairwise rank com-
parisons between models are preserved between
benchmarks. As a rough guideline, we consider
τ > 0.8 to be high concurrence, though interpret-
ing concurrence often requires more than compar-
ing overall correlation.
Extractive QA modeling approaches. To as-
sess concurrence in this work, we use a represen-
tative set of 20 diverse modeling approaches intro-
duced between 2016 to 2020 (A). These model-
ing approaches include RaSoR (Lee et al., 2016),
BiDAF (Seo et al., 2017), DocumentReader (Chen
et al., 2017), QANet (Yu et al., 2018), BiDAF++
(Clark and Gardner, 2018), MnemonicReader (Hu
et al., 2017), FusionNet (Huang et al., 2018), BERT
(Devlin et al., 2019), ALBERT (Lan et al., 2020),
RoBERTa (Liu et al., 2019), ELECTRA (Clark

et al., 2020), and SpanBERT (Joshi et al., 2020).1

10 of our 20 modeling approaches are non-
pretrained. These approaches generally propose
(1) better sequence encoders for passages and ques-
tions (e.g., Lee et al., 2016; Yang et al., 2017; Yu
et al., 2018) and/or (2) improved attention mecha-
nisms for question-passage interactions (e.g., Seo
et al., 2017; Wang et al., 2017; Huang et al., 2018).

In contrast, the other 10 of our 20 model-
ing approaches are pre-trained; these modeling
approaches all use the Transformer architecture
(Vaswani et al., 2017), but improve performance by
proposing better pre-training procedures and objec-
tives. These pre-trained modeling approaches are
generally evaluated on a suite of downstream tasks,
in contrast to non-pretrained modeling approaches,
which generally evaluate on a single benchmark.

All of these modeling approaches were origi-
nally evaluated on SQuAD, though several (e.g.,
SpanBERT) were also evaluated on other QA
benchmarks. We evaluate each modeling approach
on each benchmark with the same training hyperpa-
rameters used for SQuAD, as well as 5 additional
randomly sampled hyperparameter settings.

Extractive QA benchmarks. In this work, we
study concurrence between three broad classes of
extractive QA benchmarks: (i) human-constructed,
(ii) cloze, and (iii) synthetic. Human-constructed
benchmarks contain human-written natural lan-
guage questions and passages; examples include
SQuAD, NewsQA (Trischler et al., 2017), and
NaturalQuestions (Kwiatkowski et al., 2019). On
the other hand, cloze benchmarks (e.g., Children’s
Book Test or CNN; Hill et al., 2016; Hermann et al.,
2015) contain cloze questions, which are “fill-in-
the-blank” statements with masked answers. These
questions are usually automatically-generated from
human-written natural language passages. Finally,
synthetic benchmarks contain programmatically-
generated questions and passages (e.g., the bAbI
task suite; Weston et al., 2016).

3 Do Modeling Improvements Hold
Across Human-Constructed
Benchmarks?

Many extractive question answering benchmarks
are human-constructed—they contain human-
written natural language questions and passages.

1See Appendix A for more details about the modeling
approaches used to calculate concurrence.
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Figure 2: Human-constructed benchmarks have high concurrence with each other on both pre-trained and non-
pretrained modeling approaches.
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SQuAD 0.87 0.84 0.77 0.92 0.94
MRQA NewsQA - 0.82 0.83 0.92 0.87
MRQA NQ 0.82 - 0.69 0.80 0.80
MRQA DROP 0.83 0.69 - 0.79 0.83
MRQA HotpotQA 0.92 0.80 0.79 - 0.89

Table 1: Concurrence between human-constructed
benchmarks. Despite differences in their crowdsourc-
ing setup, passage and question distributions, and even
linguistic phenomena of interest, human-constructed
benchmarks generally have high concurrence (τ ) with
each other on our testbed of modeling approaches.

However, differences in the data collection pro-
cedure may yield benchmarks with dramatically
different passage and question distributions. Do
modeling improvements hold across benchmarks
despite these differences?
Setup. We study the concurrence between
six human-constructed benchmarks: SQuAD,
NewsQA, NaturalQuestions, DROP (Dua et al.,
2019), HotpotQA (Yang et al., 2018), and QAMR
(Michael et al., 2018). We use the MRQA versions
of NewsQA, NaturalQuestions, DROP, and Hot-
potQA (Fisch et al., 2019). Table 2 summarizes
their high-level differences. See Appendix C.1 for
examples from human-constructed benchmarks.

3.1 Results
Human-constructed benchmarks have high
concurrence amongst themselves. Despite dif-
ferences in benchmark crowdsourcing setups, pas-
sage and questions distributions, and even linguis-
tic phenomena of interest, modeling improvements
generally hold across human-constructed bench-
marks (Table 1). Furthermore, concurrence is high
over both non-pretrained and pre-trained modeling

approaches (Figure 2).
For example, SQuAD, NewsQA, and Natu-

ralQuestions differ in their passage-question joint
relationship. In SQuAD, crowdworkers are em-
ployed to write questions given Wikipedia passages,
but this results in questions with high lexical over-
lap with salient passage sentences. To minimize
such overlap in NewsQA, crowdworkers write ques-
tions given only bullet-point summaries of the pas-
sages, rather than the passages themselves. Finally,
questions in NaturalQuestions are written indepen-
dently of their provided passage. These different
crowdsourcing protocols drastically affect the ease
and cost of benchmark construction, but SQuAD,
NewsQA, and NaturalQuestions have high concur-
rence despite these differences.
Concurrence is high even when benchmarks
focus on different phenomena. We also see
that MRQA DROP and MRQA HotpotQA have
surprisingly high concurrence with other human-
constructed benchmarks (e.g., SQuAD and Natu-
ralQuestions), despite their relatively specialized
focus on particular linguistic phenomena (numeri-
cal and multi-hop reasoning, respectively).2 This
suggests that modeling improvements on bench-
marks that target general reasoning over predicate-
argument structure also improve performance on
benchmarks that focus on different phenomena. We
hypothesize this occurs because benchmarks are
more similar than we’d otherwise expect (e.g., due
to reasoning shortcuts; Min et al., 2019), and better
reasoning over predicate-argument structure may
be generally useful for other phenomena of interest.

4 Exploring the Limits of Concurrence

Our results in §3 indicate that human-constructed
benchmarks have high concurrence with each other,

2Note that MRQA DROP is a subset of the original bench-
mark that removes questions with non-extractive answers (e.g.,
answer is the result of an arithmetic operation).



Benchmark Question (Q) Passage (P) Phenomena of Interest |Q| |P| Q ⊥⊥ P

SQuAD Crowdsourced Wikipedia Predicate-Argument Structure 11 137 7
QAMR Crowdsourced Wikipedia Predicate-Argument Structure 7 25 7
NewsQA Crowdsourced News articles Predicate-Argument Structure 8 599 3
NaturalQuestions Search logs Wikipedia Predicate-Argument Structure 9 153 3
HotpotQA Crowdsourced Wikipedia Multi-Hop Reasoning 22 232 7
DROP Crowdsourced Wikipedia Numerical Reasoning 11 243 7

Table 2: Differences between the various human-constructed benchmarks evaluated. Q ⊥⊥ P is true (3) if the
question was written independently from the associated passage. |Q| and |P| denote average question and passage
token length, respectively.

despite differences in their phenomena of inter-
est and passage and question distributions. Just
how different can a benchmark be, while main-
taining high concurrence with human-constructed
benchmarks? In §4.1 we investigate the role of
training dataset size on concurrence—while larger
training datasets often yield better systems with
higher end-task accuracy, are they necessary for
comparing modeling approaches? In §4.2, we mea-
sure concurrence between human-constructed and
cloze benchmarks to better understand the role of
human-written questions and passages in concur-
rence. Cloze benchmarks have high concurrence
with human-constructed benchmarks, indicating
that human-written questions and passages are not
necessary for concurrence with human-constructed
benchmarks. To take this to an extreme, §4.3
evaluates concurrence between programmatically-
generated synthetic benchmarks (the bAbI task
suite) with human-constructed benchmarks. Our
results show that the bAbI tasks have low concur-
rence with human-constructed benchmarks. Hav-
ing found this breaking point, we work backwards
to build a minimal benchmark with high concur-
rence, which will enable us to better understand
sufficient conditions for concurrence. In §4.4, we
construct a benchmark that has no linguistic struc-
ture or complex reasoning but still has high con-
currence with human-constructed benchmarks over
non-pretrained models. Finally, §4.5 shows that a
synthetic benchmark that requires richer reasoning
between question and passage tokens can achieve
high concurrence with human-constructed bench-
marks on both pre-trained and non-pretrained mod-
eling approaches.

4.1 Downsampling Benchmarks
Many existing human-constructed extractive QA
benchmarks contain a large number of examples,
increasing their cost of construction. For example,
SQuAD has 87,599 question-answer pairs in its

Downsampled SQuAD Size

60K 40K 20K 20K 1K

SQuAD 0.96 0.96 0.94 0.87 0.77
MRQA NewsQA 0.92 0.92 0.89 0.89 0.77
MRQA NQ 0.84 0.84 0.81 0.78 0.63

Table 3: Beyond a baseline threshold of 20K examples,
downsampling the SQuAD training set minimally af-
fects concurrence with the full SQuAD benchmark and
other human-constructed benchmarks

training split. Are large training datasets necessary
for comparing modeling approaches?
Setup. We study the extent to which subsamples
of SQuAD concur with the full SQuAD benchmark
(88K examples) and five other human-constructed
benchmarks. We experiment with randomly gen-
erated subsets of the SQuAD training set with 1K,
10K, 20K, 40K, and 60K training examples. We
use the original SQuAD development set (∼10K
examples) for evaluation.
Results. Downsampling the SQuAD training set
from 88K to 20K examples does not substantially
affect concurrence with the full SQuAD benchmark
and other human-constructed benchmarks (Table 3).
Concurrence is high on both non-pretrained and
pre-trained modeling approaches (Figure 3). Down-
sampling to 10K examples slightly reduces concur-
rence with non-pretrained modeling approaches.
Concurrence with pre-trained models only begins
to degrades when using 1K training examples, indi-
cating that few-shot settings are likely categorically
different and worth studying separately.

4.2 Cloze Benchmarks
To better understand the importance of human-
written questions and passages, we measure con-
currence between human-constructed benchmarks
and cloze benchmarks. Cloze extractive ques-
tion answering benchmarks contain cloze ques-
tions, which are “fill-in-the-blank” statements
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Figure 3: Downsampling the SQuAD training dataset can yield high concurrence with the full SQuAD benchmark
on both pre-trained and non-pretrained modeling approaches. In particular, 10K training examples are sufficient
for high concurrence on pre-trained models, and 20K examples yields high concurrence on non-pretrained mdoels.
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Figure 4: Despite their cloze-formatted question, which differ from questions typically found in human-constructed
benchmarks, cloze benchmarks can have high concurrence with SQuAD (CBT-CN, CBT-NE, and LAMBADA),
though this is not always the case (CNN, ReCoRD).

with masked answers. Large cloze benchmarks
are cheap to construct because examples can be
automatically generated by eliding spans from
naturally-occurring text. Although the passages
in cloze benchmarks are natural language, their fill-
in-the-blank require more guessing from context,
rather than the answer deduction typically found in
human-constructed benchmarks.

Setup. We study the Children’s Book Test (CBT;
Hill et al., 2016), LAMBADA (Paperno et al.,
2016), CNN (Hermann et al., 2015), and ReCoRD
(Zhang et al., 2018) cloze benchmarks and measure
their concurrence with human-constructed bench-
marks on our testbed of modeling approaches. We
follow prior work (Dhingra et al., 2017) and eval-
uate on subsets of CBT where the answer token
is either a common noun (CBT-CN) or a named
entity (CBT-NE). In addition, we use a subsampled
version of the CNN benchmark with 100K training
examples to save compute. See Appendix C.2 for
examples from the cloze benchmarks we study.

Results. Despite using programmatically-
generated cloze questions, cloze benchmarks (e.g.,
CBT and LAMBADA) can have high concurrence
with human-constructed benchmarks (Table 4).
On the other hand, CNN and ReCoRD have
lower concurrence with human-constructed bench-

CBT
(C

N)

CBT
(N

E)

LAM
BADA

CNN
(10

0K
)

ReC
oR

D

SQuAD 0.85 0.88 0.85 0.82 0.79
MRQA NewsQA 0.92 0.93 0.87 0.76 0.77
MRQA NQ 0.78 0.79 0.75 0.79 0.88

Table 4: Concurrence between programmatically-
generated cloze benchmarks and human-constructed
benchmarks can be high (e.g., CBT and LAMBADA),
but not always (CNN and ReCoRD).

marks, especially on non-pretrained modeling
approaches—the performance improvements
between pre-trained modeling approaches are still
largely preserved (Figure 4).

Concurrence on CNN is lower due to a pair of
outlier modeling approaches—DocumentReader,
with and without external linguistic features. We
hypothesize that these models do poorly on CNN
because some aspects of their preprocessing are
SQuAD-specific; this may have also influenced
architecture design. ReCoRD’s low overall con-
currence comes from the poor performance of non-
pretrained modeling approaches. This may be due
to ReCoRD’s construction procedure, since a filter-
ing step removed all examples that were correctly



answered by a strong non-pretrained modeling ap-
proach (SAN, with SQuAD dev. EM of 76.24; Liu
et al., 2018). ReCoRD has low concurrence with
SQuAD on modeling approaches that are weaker
than SAN, and high concurrence on modeling ap-
proaches that outperform SAN.

4.3 High Concurrence Is Not Universal:
Improvements Do Not Hold On bAbI

Having established that human-written passages
are not necessary for high concurrence with human-
constructed benchmarks (§4.2), we take this to an
extreme by evaluating concurrence between human-
constructed benchmarks and synthetic extractive
question answering benchmarks, which contain
questions and passages that are programmatically
generated (and possibly not even natural language).
The bAbI task suite contains 20 synthetic question-
answering benchmarks, each of which focuses on
a particular skill required by a competent dialogue
system (e.g., fact retrieval, subject-object relations,
counting). The textual data is generated from a
simulated toy environment.

Setup. We consider the 11 tasks that can be loss-
lessly converted to an extractive format (Tasks 1, 2,
3, 4, 5, 11, 12, 13, 14, 15, 16). For each task, we
use the two officially-released data settings: one
setting has 900 training examples and 100 devel-
opment examples, and the other has 9,000 training
examples and 1,000 development examples. In this
section, we focus on the setting with 900 training
examples, since all modeling approaches do nearly
perfectly on almost all tasks with 9,000 examples
(Appendix D.3). See Appendix C.3 for examples
from the existing synthetic benchmarks we study.

Results and Discussion. The bAbI tasks
have low concurrence with human-constructed
benchmarks—high concurrence is not universal.
Modeling approaches often have either near-perfect
or near-random performance (Figure 5).

4.4 What is Sufficient for Concurrence on
Non-Pretrained Modeling Approaches?

To better understand the sufficient conditions
for concurrence with human-constructed bench-
marks, we are interested in constructing a mini-
mal synthetic benchmark with high concurrence.
Given that human-written passages and ques-
tions are not necessary for high concurrence with
human-constructed benchmarks (§4.2), but the
programmatically-generated bAbI synthetic bench-

marks have low concurrence (§4.3), we design a
minimal synthetic benchmark with high concur-
rence with human-constructed benchmarks over
non-pretrained modeling approaches.
Setup. Questions in extractive QA benchmarks
can often be answered by exploiting lexical overlap
between question and passage tokens (Weissenborn
et al., 2017; Krishna et al., 2020). To better under-
stand the limits of concurrence, we build a minimal
synthetic cloze benchmark (FuzzySyntheticQA)
that explicitly targets this fuzzy pattern-matching
and find that it has high concurrence with SQuAD
on non-pretrained modeling approaches. Figure 6
shows a sample passage and question-answering
pairs. We use 10,000 questions for training and
10,000 questions for evaluation. See Appendix E
for further details about FuzzySyntheticQA’s con-
struction.
Passage Generation. We generate the passage
by randomly sampling 150 tokens from the uniform
distribution over a token vocabulary. The token
vocabulary is taken from the WikiText-2 training
set (Merity et al., 2017) and has 68,429 types.
Answer Generation. The answer token is ran-
domly selected from the generated passage.
Cloze Question Generation. To generate the
cloze question, we first extract the answer token’s
local context (up to 10 tokens) and mask out the
answer token. Then, we corrupt the cloze question
by (1) randomly replacing its tokens with related to-
kens (100 approximate nearest neighbor tokens in
the vocabulary, measured by vector distance in the
pre-trained English FastText embeddings), (2) lo-
cally permuting its tokens (within 3 positions), and
(3) applying word dropout (with rate 0.2).
Results and Discussion. FuzzySyntheticQA has
high concurrence with human-constructed bench-
marks, but only on non-pretrained modeling
approaches—concurrence on pre-trained modeling
approaches is much lower (Figure 7). Even bench-
marks that lack much linguistic structure can have
high concurrence with human-constructed bench-
marks, as long as they require similar phenomena
(in this case, fuzzy lexical matching between the
question and passage).

Why do improvements in pre-training not hold
on FuzzySyntheticQA? One potential reason is that
passages in FuzzySyntheticQA lack of linguistic
structure. To evaluate this hypothesis, we gen-
erate FuzzySyntheticQA questions from English
Wikipedia passages, rather than sampling from the
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Figure 5: Modeling approaches perform perfectly or at near-chance performance on the bAbI tasks, limiting their
ability to recapitulate historical findings on SQuAD (see Appendix D.3 for the full results on all tasks).

Passage Snippet: ... chests Melchior divorced might
whereof 37th Kadima milling raved Salib melanocephala
Pilgrims chop Prosser draftsmanship 203 Caesarius
madam Deconstruction Guevara Amalia ...
Question: Pigs corncrake XXXXX 286 airmanship Kition
gracious Modernism Raul
Answer: chop

Figure 6: Example passage and question-answer pair
from FuzzySyntheticQA.
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Figure 7: Left: FuzzySyntheticQA has high concur-
rence with SQuAD on non-pretrained modeling ap-
proaches, but pre-training does not increase perfor-
mance, leading to low overall concurrence. Right: De-
spite lacking natural language structure, WikidataSyn-
theticQA has high concurrence with SQuAD.

uniform distribution over tokens, but this still re-
sults in low concurrence with human-constructed
benchmarks on pre-trained modeling approaches
(r = −0.49, τ = −0.19), indicating that the low
concurrence comes from more than just a lack of
natural language passages (Appendix F).

4.5 What is Sufficient for Concurrence on
Pre-Trained and Non-Pretrained
Modeling Approaches?

Having found a minimal synthetic benchmark
that achieves high concurrence with human-
constructed benchmarks on non-pretrained mod-
eling approaches (§4.4), we show that a synthetic

Passage Snippet: Mae Jemison profession astronaut .
STS-47 orbits completed 126.0 . STS-47 crew member Mae
Carol Jemison . Mae Jemison worked for NASA . Mae
C. Jemison award received Rachel Carson Award . Mae
Jemison birthplace Decatur . ...
Question: human spaceflight orbits completed XXXXX
Answer: 126.0
Question: Rachel Carson Award honor received by
XXXXX
Answer: Mae C. Jemison
Question: Human XXXXX The River City
Answer: birthplace

Figure 8: Example passage and question-answer pairs
from WikidataSyntheticQA.

benchmark that requires richer reasoning between
question and passage tokens is sufficient for high
concurrence on both non-pretrained and pre-trained
modeling approaches.

Setup. We construct WikidataSyntheticQA, a
benchmark derived from Wikidata triples; Figure 8
shows a sample passage and question-answering
pairs. Knowledge graphs like Wikidata are rich
sources of complex relations between entities,
which enables us to increase the complexity of
question-passage token relations beyond the sim-
ple noising and corruptions of FuzzySyntheticQA.
We use 10,000 questions for training and 9,835
question-answer pairs for evaluation. See Ap-
pendix G for further details about WikidataSyn-
theticQA’s construction.

Wikidata Background. Wikidata is a knowl-
edge graph connecting entities via relations. Wiki-
data entities and relations include a label, the most
common name that an entity is known by, and
aliases, alternative names for entities. For example,
the entity Mae_C._Jemison has the label “Mae C.
Jemison”, with aliases “Mae Jemison” and “Mae
Carol Jemison”. We treat labels and aliases as po-
tential surface realizations of entities and relations.



Generation Preliminaries. Generating a pas-
sage requires a set of Wikidata triples. To select
these triples, we first randomly choose a seed entity
from the 10,000 Wikidata entities with the highest
PageRank score (Page et al., 1999). We then ex-
tract the triples from the seed entity and all entities
connected to the seed entity. Finally, we randomly
sample 50 triples for use in generation.

Passage Generation. Given the set of 50 Wiki-
data triples, we realize triples into textual surface
forms by selecting a random Wikidata label or alias
for each triple element. The final passage is formed
by concatenating the realizations of all triples and
adding a delimiter token between them to mimic
sentential structure.

Answer Generation. We generate an answer
span by selecting a random triple used in the pas-
sage generation process, and then choosing a ran-
dom element of that triple. The passage realization
of this random element is the answer span.

Cloze Question Generation. To generate the
cloze question, we take the triple used for answer
generation and mask out the particular element
marked as the answer. We realize the non-answer
triple elements into textual forms by selecting a ran-
dom Wikidata label or alias for each triple element.
Then, we optionally and randomly replace the pred-
icate with its inverse (if one exists), reversing the
subject and the object to maintain consistency. We
also optionally and randomly replace the remaining
unmasked entity (i.e., the triple subject or object
that was not masked) with one of its hypernyms,
challenging models’ knowledge of such relations.

Results and Discussion. As Figure 7 shows,
WikidataSyntheticQA has high concurrence with
human-constructed benchmarks, despite its lack of
natural language passages or questions.

We hypothesize that WikidataSyntheticQA has
higher concurrence with human-constructed bench-
marks than FuzzySyntheticQA because correctly
answering its examples often requires reasoning
about hypernymy relations between entities and
inverse relations between predicates—it is con-
ceivable that pre-trained modeling approaches
are better-equipped to handle and use these lex-
ical relations. In addition, the Wikidata aliases
provide sufficient lexical variation such that the
benchmark is not trivially solvable through string
pattern-matching (removing aliases from the gen-
eration procedure results in near-perfect perfor-
mance from all modeling approaches). In contrast,

high performance on FuzzySyntheticQA simply re-
quires matching similar tokens in the passage and
question—models can achieve high performance
by simply learning the similarity relationships in
the FastText vector space.

5 Related Work

A recent line of work examines whether systems
have overfit to particular test sets by taking existing
systems and evaluating them on newly-constructed
test sets (Recht et al., 2019; Yadav and Bottou,
2019; Miller et al., 2020). Recent work has also
studied whether higher-performing systems are
more robust by studying the correlation between
in-domain and out-of-domain improvements (Taori
et al., 2020; Djolonga et al., 2020).

In contrast, this work examines whether im-
provements from modeling approaches hold across
benchmarks. We train and test modeling ap-
proaches on a variety of existing and newly-
constructed benchmarks. In this regard, our work
is similar to the study of Kornblith et al. (2019),
who find that performance improvements on Im-
ageNet are well-correlated with performance im-
provements on other benchmarks.

6 Conclusion

This work studies whether QA modeling improve-
ments hold across the diverse landscape of QA
benchmarks. We develop the notion of concur-
rence, which quantifies the similarity between
benchmarks’ rankings of modeling approaches.
Experiments with 32 QA benchmarks and 20 di-
verse modeling approaches indicate that human-
constructed benchmarks largely have high concur-
rence amongst themselves, even when their passage
and question distributions or linguistic phenomena
of focus are very different. To better understand
how different benchmark attributes affect concur-
rence, we explore downsampled benchmarks and
various programmatically-generated benchmarks,
the latter having high concurrence only when they
target phenomena that are also useful for better per-
formance on human-constructed benchmarks (e.g.,
identifying paraphrase and lexical overlap). Our
results indicate that the modeling improvements
studied hold broadly, despite years of intense com-
munity focus on a small number of benchmarks.
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Limitations

While we conducted an extensive set of experi-
ments to gain a broad picture of whether modeling
improvements hold between benchmarks, it is al-
ways possible to investigate more settings. While
our study covers a representative set of 20 non-
pretrained and pre-trained modeling approaches,
it is conceivable that evaluating more modeling
approaches (or a different set of modeling ap-
proaches) on additional benchmarks (or a differ-
ent set of benchmarks) would have led to different
results.

Furthermore, although we evaluate each mod-
eling approach on each benchmark with the same
training hyperparameters used for SQuAD, as well
as 5 additional randomly sampled hyperparame-
ter settings (20 × 32 × 6 = 3840 experiments in
total), it is possible that the SQuAD hyperparam-
eters for some modeling approaches happen to be
more general than other modeling approaches. Ide-
ally, each modeling approach would be individually
tuned to maximize performance on every bench-
mark, but doing so requires prohibitive amounts of
compute and researcher effort—we believe that our
experiments have enough coverage with respect to
hyperparameter optimization.
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Appendices
A Implementation Details of Modeling Approaches Evaluated

We evaluated a representative subset of 20 extractive question answering modeling approaches, published
between 2016 to 2020 (Table 5). Below, we describe implementation details for all the modeling
approaches evaluated.

Modeling Approach SQuAD 1.1 Dev. EM

Our Reproduction Published

RaSoR 64.9 66.4
BiDAF 67.4 67.7
DocumentReader 69.7 69.5
DocumentReader
(no external features) 69.2 -

BiDAF++ 69.5 71.6
MnemonicReader 73.0 71.8
MnemonicReader
(no external features) 72.7 -

QANet 72.4 73.6
FusionNet 72.9 75.0
FusionNet
(no external features) 72.2 -

BERT (base, uncased) 81.5 80.8
BERT (large, uncased) 84.2 84.1
BERT (large, uncased,
whole-word masking) 87.3 86.7

ALBERT (base, V1) 81.9 82.3
ALBERT (xxlarge, V1) 89.1 89.3
RoBERTa (base) 83.4 -
RoBERTa (large) 87.0 88.9
ELECTRA (base) 85.9 84.5
SpanBERT (base) 86.2 -
SpanBERT (large) 88.7 88.1

Table 5: Published and reproduced SQuAD 1.1 EM of all 20 modeling approaches used for assessing concurrence.
“-” indicates that the modeling approach has no published SQuAD 1.1 EM result.

RaSoR We reimplement the RaSoR model of (Lee et al., 2016) with PyTorch in the AllenNLP (Gardner
et al., 2018) framework, following the original paper as closely as possible. While the authors released
an implementation of their method (github.com/shimisalant/rasor), the codebase is in Theano and
inexplicably fails on passages that are significantly longer than those found in SQuAD (e.g., those found
in the CNN benchmark).

BiDAF We use the reimplementation of BiDAF (Seo et al., 2017) found in AllenNLP (Gardner et al.,
2018).

DocumentReader (with and without external features) We use an reimplementation of
DocumentReader (Chen et al., 2017) released at github.com/felixgwu/FastFusionNet. The original
DocumentReader approach uses external features from a part-of-speech tagger and named entity recogni-
tion system. To fairly compare to systems that do not use such external resources, we also run the models
without these features. We keep the hand-crafted term-frequency and token exact match features defined
in the DocumentReader paper.

We also make some changes to the DocumentReader preprocessing code. In particular, the original
implementation (github.com/facebookresearch/DrQA) of these two modeling approaches (intended for
training and evaluation on SQuAD) replaces all tokens without a pre-trained GloVe embedding (trained
on 840B tokens from the Common Crawl) with a special unknown token—the reimplementation we use
adopts the same practice. This preprocessing assumption works well for SQuAD, since the vast majority
of SQuAD tokens also appear in the GloVe vocabulary. However, this preprocessing assumption does

https://github.com/shimisalant/rasor
https://github.com/felixgwu/FastFusionNet
https://github.com/facebookresearch/DrQA


not apply to CNN—many of the special @entityN and @placeholder markers, which anonymize entities
to prevent models from deriving answers from world knowledge, are not in the GloVe vocabulary. As a
result, the original DocumentReader implementation maps them all to a single unknown token, effectively
preventing the model from telling valid answer choices apart and yielding a model that performs no better
than the majority baseline. Keeping these special tokens in the model’s vocabulary enables differentiating
between different entities in a passage, which naturally improves performance (and are the reported
numbers)—however, the modeling approaches’ improvements on SQuAD still do not transfer to CNN.

BiDAF++ We modify an AllenNLP (Gardner et al., 2018) reimplementation of the BiDAF++ Clark
and Gardner (2018) model originally used in pair2vec (Joshi et al., 2019) for evaluation on SQuAD 2.0
(Rajpurkar et al., 2018).

MnemonicReader We use an reimplementation of MnemonicReader (Hu et al., 2017; note the spe-
cific arXiv revision) released at github.com/HKUST-KnowComp/MnemonicReader. In particular, the
reimplementation is of the vanilla MnemonicReader without reinforcement learning.

QANet We use the reimplementation of QANet (Yu et al., 2018) found in AllenNLP (Gardner et al.,
2018). This reimplementation was used as a baseline method for DROP (Dua et al., 2019).

FusionNet We use an reimplementation of FusionNet (Chen et al., 2017) released at
github.com/felixgwu/FastFusionNet. This reimplementation was used as a baseline in Wu et al. (2019).
Drawing inspiration from DocumentReader, the FusionNet approach also uses external features from a
part-of-speech tagger and named entity recognition system. As a result, we also run the models with-
out these features to fairly compare to systems that do not use such external resources. We keep the
hand-crafted term-frequency and token exact match features originally used in the FusionNet paper.

BERT (base, large, and wwm) We use the HuggingFace Transformers (Wolf et al., 2020) library to
fine-tune BERT (Devlin et al., 2019) on extractive question answering benchmarks. In particular, we use
the base, uncased, BERT pre-trained model, the large, uncased, BERT pre-trained model, and the large,
uncased, BERT model pre-trained with whole-word masking.

ALBERT (base and xxlarge) We use the HuggingFace Transformers (Wolf et al., 2020) library to
fine-tune ALBERT (Lan et al., 2020) on extractive question answering benchmarks. In particular, we use
the base and xxlarge V1 ALBERT pre-trained models.

RoBERTa (base and large) We use the HuggingFace Transformers (Wolf et al., 2020) library to fine-
tune RoBERTa (Liu et al., 2019) on extractive question answering benchmarks. In particular, we use the
base and large RoBERTa pre-trained models.

ELECTRA (base) We use the HuggingFace Transformers (Wolf et al., 2020) library to fine-tune the
ELECTRA base discriminator (Clark et al., 2020) on extractive question answering benchmarks.

SpanBERT (base and large) We use the author-released codebase
(github.com/facebookresearch/SpanBERT) to fine-tune SpanBERT (Joshi et al., 2020) on ex-
tractive question answering benchmarks. In particular, we use the base and large SpanBERT pre-trained
models.

B Preprocessing Existing Benchmarks

B.1 Existing Human-Constructed Benchmarks

We use the MRQA NewsQA, MRQA DROP, and MRQA HotpotQA benchmarks exactly as released
by the MRQA 2019 shared task (Fisch et al., 2019). The passages in MRQA NaturalQuestions contain
HTML entities (e.g., <P> and </P>). The tokenizers used in non-pretrained models frequently split
these entities into separate tokens. For example, <P> may become <, P, and >. This is problematic
because the entities are quite common in passages, and expanding them during tokenization drastically
increases the passage lengths, which some non-pretrained modeling approaches cannot handle due to GPU
memory limits. HTML entities are tokenized like this because they contain non-alphanumeric characters.
As a result, we normalize HTML entities by replacing the non-alphanumeric characters. For example,
<P> becomes BPB, and </P> becomes EEPE. These tokens are correctly kept intact. It’s possible that

https://github.com/HKUST-KnowComp/MnemonicReader
https://github.com/felixgwu/FastFusionNet
https://github.com/facebookresearch/SpanBERT


modeling approaches that use subword information will perform worse with these normalized HTML
entities, but we empirically observe that this normalization does not have a measurable impact on model
performance.

QAMR questions were originally collected at the sentence level, but we concatenate these sentences to
reconstruct the original passages they were sourced from. We then pair these reconstructed passages with
the original QAMR questions. It’s possible for questions to become unanswerable at the passage-level.
One case of his happens when two sentences have the same question—we filter out such questions that
are asked for multiple sentences in a reconstructed passage. Questions can also become unanswerable
if relations between entities change between sentences. For example, given the passage “Bill lived in
California in 1920. Bill lived in Washington in 1921.” , the question “Where did Bill live” is answerable
within the context of a particular sentence, but not in the context of the entire passage. Manual examination
of generated QAMR passages and questions suggests that this case is rather uncommon, but it may still
introduce a small amount of noise into the benchmark.

B.2 Existing Cloze Benchmarks
To convert the CBT and CNN benchmarks to extractive format, we take the passages and question
as-is. The answer span is designated as the first occurrence of the answer token in the passage. To
convert LAMBADA into extractive format, we follow the setup of Cheng and Erk (2020). The ReCoRD
benchmark is used as-is, since it includes span-level annotations of answer tokens in passages.

B.3 Existing Synthetic Benchmarks
We consider tasks 1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 16. The other tasks cannot be converted to extractive
format (e.g., they require “yes”/“no” answers that do not appear in passages). To convert the tasks in the
bAbI benchmark to extractive format, we take the passages and question as-is. While the bAbI benchmark
does not provide character-level span annotations for answers, questions come with “supporting facts”—
sentences in the passage that contain the answer. Thus, choose the first occurrence of the answer token in
the supporting fact sentence as our answer span.

Some of the bAbI tasks, while usable in an extractive format in theory, cannot be trivially converted
to the extractive format via the procedure above because the released benchmark’s annotations do not
appear in the passage. For instance, consider Figure 9, which shows an example drawn from the training
set of Task 15. The answer provided in the benchmark is “cat” , although this token never appears in
the passage—instead, “cats” does. In cases where the originally-labeled answer cannot be found in the
supporting fact, but its pluralization is present, we use the pluralized answer as our answer span.

Passage: Mice are afraid of cats. Gertrude is a mouse. Emily is a mouse. Wolves are afraid of sheep. Winona is a wolf.
Jessica is a mouse. Cats are afraid of sheep. Sheep are afraid of cats.

Question: What is jessica afraid of?
Answer: cat

Figure 9



C Examples From Existing Benchmarks

C.1 Examples From Existing Human-Constructed Benchmarks
Table 6 shows examples from the existing human-constructed benchmarks we study.

Benchmark Passage (some parts shortened with ...) Question Answer

MRQA NewsQA (CNET) – When Facebook Chief Executive Mark
Zuckerberg recently announced a “Like” button that
publishers could place on their Web pages, he pre-
dicted it would make the Web smarter and “more
social”. What Zuckerberg didn’t point out is that
widespread use of the Like button allows Facebook
to track people as they switch from CNN.com to
Yelp.com to ESPN.com, all of which are sites that
have said they will implement the feature...

What does the like
button allow?

Facebook
to track
people

MRQA
NaturalQuestions

BPB A shooting schedule is a project plan of each day
’s shooting for a film production . It is normally created
and managed by the assistant director , who reports
to the production manager managing the production
schedule . Both schedules represent a timeline stating
where and when production resources are used . EEPE

who ’s job is it to
schedule each day ’s
shooting

assistant
director

MRQA DROP Coming off their win over the Chargers, the Bills flew
to Dolphin Stadium for a Week 8 AFC East duel with
the Miami Dolphins. In the first quarter, Buffalo
trailed early as Dolphins QB Chad Pennington com-
pleted a 2-yard TD pass to TE Anthony Fasano. The
Bills responded with kicker Rian Lindell getting a 19-
yard field goal. In the second quarter, Buffalo took
the lead as Lindell got a 43-yard and a 47-yard field
goal...

Which team allowed
the most first half
points?

Dolphins

MRQA HotpotQA [PAR] [TLE] John M. Brown [SEP] John Mifflin Brown
(September 8, 1817 – March 16, 1893) was a bishop
in the African Methodist Episcopal (AME) church. He
was a leader in the underground railroad. He helped
open a number of churches and schools, including
the Payne Institute which became Allen University in
Columbia, South Carolina and Paul Quinn College in
Waco, Texas. He was also an early principal of Union
Seminary which became Wilberforce University [PAR]
[TLE] Waco, Texas [SEP] Waco ( ) is a city which is
the county seat of McLennan County, Texas, United
States. It is situated along the Brazos River and I-35,
halfway between Dallas and Austin. The city had a
2010 population of 124,805, making it the 22nd-most
populous city in the state. The US Census 2016 pop-
ulation estimate is 134,432 The Waco Metropolitan
Statistical Area consists of McLennan and Falls Coun-
ties, which had a 2010 population of 234,906. Falls
County was added to the Waco MSA in 2013. The US
Census 2016 population estimate for the Waco MSA
is 265,207.

What city is the
home to Paul Quinn
College and sets on
the Brazos River
between Dallas and
Austin?

Waco,
Texas

QAMR An additional problem to face the empire came as a
result of the involvement of Emperor Maurice -LRB- r.
582 – 602 -RRB- in Persian politics when he intervened
in a succession dispute . This led to a period of peace
, but when Maurice was overthrown , the Persians
invaded and during the reign of Emperor Heraclius -
LRB- r. 610 – 641 -RRB- controlled large chunks of
the empire , including Egypt , Syria , and Anatolia
until Heraclius ’ successful counterattack . In 628 the
empire secured a peace treaty and recovered all of its
lost territories .

Whose politics did
the empire get in-
volved with?

Persian

Table 6: Example passages, questions, and answers from the existing human-constructed benchmarks we study.



C.2 Examples From Existing Cloze Benchmarks
Table 7 shows examples from the existing cloze benchmarks we study.

Benchmark Passage (some parts shortened with ...) Question Answer

Children’s Book Test
(Common Nouns)

... Lady Latifa argued and urged her wishes , but in
vain ; the prince was not to be moved . Then she called
to the cupbearers for new wine , for she thought that
when his head was hot with it he might consent to
stay . The pure , clear wine was brought ; she filled a
cup and gave to him . He said : ’ O most enchanting
sweetheart ! it is the rule for the host to drink first
and then the guest . ’

So to make him
lose his head , she
drained the XXXXX
; then filled it again
and gave him .

cup

Children’s Book Test
(Named Entities)

... At last , however , the Sunball became aware how
sad Letiko was . ... Then he sent them away , and
called two hares to him , and said : ‘ Will you take
Letiko home to her mother ? ’ ‘ Yes , why not ? ’
‘ What will you eat and drink if you should become
hungry and thirsty by the way ? ’ ‘ We will eat grass
and drink from streamlets . ’ ‘ Then take her , and
bring her home . ’

Then the hares set
out , taking XXXXX
with them , and be-
cause it was a long
way to her home they
became hungry by
the way .

Letiko

LAMBADA sorry ’s not going to win me my game tomorrow . my
racket is . i ca n’t believe i let you take it out of here
in the first place ! ” “ but , dad , i ’m sure you made
mistakes when you were a hippie teenager ! ” “ and i
paid for them !

like you ’re going to
pay for my

racket

CNN ( @entity0 ) you ’ll see some familiar faces in the @en-
tity1 . @entity2 beat @entity3 66 - 52 on sunday ,
giving @entity4 ’ coach @entity5 his 12th trip to the
semifinals of the @entity6 men ’s basketball tourna-
ment . @entity7 and @entity8 each scored 16 to help
@entity2 win the @entity9 . @entity3 , led by 16 points
from @entity10 , was hoping to earn its first trip to the
@entity1 . here ’s how the @entity1 , to be played in
@entity11 , has shaped up : next saturday , @entity2
will face @entity12 in the first semifinal . in the next
game , top seed @entity13 will battle @entity14 . ...

the @entity1
matchups : @place-
holder vs. @entity12
and @entity13 vs.
@entity14

@entity2

ReCoRD Secretary of State Hillary Clinton on Monday tried to
douse a political firestorm over the deadly assault on
a U.S. diplomatic mission in Libya, saying she’s re-
sponsible for the security of American diplomatic out-
posts. "I take responsibility," Clinton told CNN in
an interview while on a visit to Peru. "I’m in charge
of the State Department’s 60,000-plus people all over
the world, 275 posts. The president and the vice pres-
ident wouldn’t be knowledgeable about specific deci-
sions that are made by security professionals. They’re
the ones who weigh all of the threats and the risks and
the needs and make a considered decision."
@highlight
"What I want to avoid is some kind of political gotcha
or blame game," Clinton says
@highlight
"I take this very personally," she says
@highlight
Diplomats need security but "can’t hang out behind
walls," she adds

Clinton also de-
scribed a desperate
scene in the @place-
holder during the
hours of the attack,
as staff tried to
find out what had
happened.

State De-
partment

Table 7: Example passages, questions, and answers from the existing cloze benchmarks we study.



C.3 Examples From Existing Synthetic Benchmarks
Table 8 shows examples from the existing synthetic benchmarks we study. The contents of this table are
reproduced from Weston et al. (2016).

Benchmark Passage Question Answer

bAbI Task 1
(Single Supporting Fact)

Mary went to the bathroom. John
moved to the hallway. Mary travelled
to the office.

Where is Mary? office

bAbI Task 2
(Two Supporting Facts)

John is in the playground. John
picked up the football. Bob went to
the kitchen.

Where is the foot-
ball?

playground

bAbI Task 3
(Three Supporting Facts)

John picked up the apple. John went
to the office. John went to the
kitchen. John dropped the apple.

Where was the apple
before the kitchen?

office

bAbI Task 4
(Two Argument Relations)

The office is north of the bedroom.
The bedroom is north of the bath-
room. The kitchen is west of the gar-
den.

What is north of the
bedroom?

office

bAbI Task 5
(Three Argument Relations)

Mary gave the cake to Fred. Fred
gave the cake to Bill. Jeff was given
the milk by Bill.

Who did Fred give
the cake to?

Bill

bAbI Task 11
(Basic Coreference)

Daniel was in the kitchen. Then he
went to the studio. Sandra was in the
office.

Where is Daniel? studio

bAbI Task 12
(Conjunction)

Mary and Jeff went to the kitchen.
Then Jeff went to the park.

Where is Jeff? park

bAbI Task 13
(Compound Coreference)

Daniel and Sandra journeyed to the
office. Then they went to the gar-
den. Sandra and John travelled to
the kitchen. After that they moved
to the hallway.

Where is Daniel? garden

bAbI Task 14
(Time Reasoning)

In the afternoon Julie went to the
park. Yesterday Julie was at school.
Julie went to the cinema this evening.

Where did Julie go
after the park?

cinema

bAbI Task 15
(Basic Deduction)

Sheep are afraid of wolves. Cats are
afraid of dogs. Mice are afraid of cats.
Gertrude is a sheep.

What is Gertrude
afraid of?

wolves

bAbI Task 16
(Basic Induction)

Lily is a swan. Lily is white. Bernhard
is green. Greg is a swan.

What color is Greg? white

Table 8: Example passages, questions, and answers from the existing synthetic benchmarks we study.



D Full Results on Existing Benchmarks

D.1 Full Results on Existing Human-Constructed Benchmarks
Table 9 and Table 10 show the performance of each modeling approach on each existing human-constructed
benchmark.

MRQA NewsQA MRQA
NaturalQuestions

MRQA DROP

RaSoR 44.68 60.02 51.30
BiDAF 43.49 58.43 51.36
DocumentReader 46.30 59.08 54.96
DocumentReader (no external features) 46.32 59.39 54.69
BiDAF++ 46.53 60.23 55.16
MnemonicReader 48.43 61.53 57.02
MnemonicReader (no external features) 48.01 61.80 57.35
QANet 47.03 61.74 54.56
FusionNet 49.00 59.62 57.82
FusionNet (no external features) 48.88 59.54 57.95
BERT (base, uncased) 52.61 67.16 52.63
BERT (large, uncased) 54.99 69.38 61.54
BERT (large, uncased, whole-word masking) 57.86 71.67 71.66
ALBERT (base, V1) 53.25 67.37 61.21
ALBERT (xxlarge, V1) 61.16 72.95 78.64
RoBERTa (base) 56.62 68.28 64.54
RoBERTa (large) 59.14 72.06 74.12
ELECTRA (base) 57.60 70.23 69.00
SpanBERT (base) 55.60 69.51 63.74
SpanBERT (large) 59.09 72.13 75.05

Table 9: Performance of modeling approaches when evaluated on MRQA NewsQA, MRQA NaturalQuestions and
MRQA DROP.

MRQA HotpotQA QAMR

RaSoR 51.35 51.56
BiDAF 50.94 51.84
DocumentReader 52.74 56.00
DocumentReader (no external features) 52.18 54.14
BiDAF++ 53.86 54.69
MnemonicReader 56.13 58.07
MnemonicReader (no external features) 55.60 56.92
QANet 54.16 53.31
FusionNet 57.69 59.14
FusionNet (no external features) 57.38 56.91
BERT (base, uncased) 59.53 64.36
BERT (large, uncased) 61.63 67.51
BERT (large, uncased, whole-word masking) 65.02 71.03
ALBERT (base, V1) 61.65 66.30
ALBERT (xxlarge, V1) 68.17 74.15
RoBERTa (base) 61.19 67.16
RoBERTa (large) 64.58 71.44
ELECTRA (base) 62.58 68.16
SpanBERT (base) 63.89 68.70
SpanBERT (large) 66.60 71.46

Table 10: Performance of modeling approaches when evaluated on MRQA HotpotQA and QAMR.



D.2 Full Results on Existing Cloze Benchmarks
Table 11 and Table 12 show the performance of each modeling approach on each existing cloze benchmark.

CBT (CN) CBT (NE) LAMBADA

RaSoR 53.00 69.85 71.95
BiDAF 52.45 72.75 70.29
DocumentReader 56.55 73.85 74.42
DocumentReader (no external features) 57.15 74.60 74.08
BiDAF++ 58.40 77.15 71.95
MnemonicReader 61.45 78.80 74.57
MnemonicReader (no external features) 61.20 77.90 74.55
QANet 57.65 76.95 74.89
FusionNet 65.05 80.25 76.83
FusionNet (no external features) 64.85 79.85 76.92
BERT (base, uncased) 72.40 82.45 84.13
BERT (large, uncased) 76.65 84.55 86.83
BERT (large, uncased, whole-word masking) 79.90 86.90 91.23
ALBERT (base, V1) 70.75 82.70 82.14
ALBERT (xxlarge, V1) 86.90 90.70 94.53
RoBERTa (base) 75.70 84.90 86.48
RoBERTa (large) 82.45 88.60 92.27
ELECTRA (base) 74.20 84.40 86.40
SpanBERT (base) 75.90 85.50 87.10
SpanBERT (large) 80.75 88.80 91.65

Table 11: Performance of modeling approaches when evaluated on CBT (CN), CBT (NE) and LAMBADA.

CNN (100K Examples) ReCoRD

RaSoR 74.59 32.97
BiDAF 75.59 30.88
DocumentReader 72.66 29.97
DocumentReader (no external features) 72.38 29.52
BiDAF++ 79.20 34.93
MnemonicReader 79.46 39.01
MnemonicReader (no external features) 78.95 37.87
QANet 79.00 33.46
FusionNet 79.05 30.89
FusionNet (no external features) 78.80 28.91
BERT (base, uncased) 79.74 58.45
BERT (large, uncased) 82.54 67.18
BERT (large, uncased, whole-word masking) 82.72 72.85
ALBERT (base, V1) 79.33 56.54
ALBERT (xxlarge, V1) 86.03 81.87
RoBERTa (base) 82.26 68.88
RoBERTa (large) 86.77 77.63
ELECTRA (base) 82.08 69.61
SpanBERT (base) 83.31 69.23
SpanBERT (large) 84.81 77.72

Table 12: Performance of modeling approaches when evaluated on CNN (100K Examples) and ReCoRD.



D.3 Full Results on Existing Synthetic Benchmarks
Table 13 and Table 14 and Table 15 show the performance of each modeling approach on each existing of
the bAbI tasks (900 training examples).

bAbI QA #1 bAbI QA #2 bAbI QA #3 bAbI QA #4

RaSoR 100.0 60.0 71.0 81.0
BiDAF 100.0 42.0 53.0 83.0
DocumentReader 100.0 63.0 70.0 100.0
DocumentReader (no external features) 100.0 76.0 93.0 100.0
BiDAF++ 100.0 100.0 100.0 78.0
MnemonicReader 100.0 44.0 71.0 100.0
MnemonicReader (no external features) 100.0 100.0 74.0 100.0
QANet 100.0 42.0 39.0 85.0
FusionNet 100.0 84.0 77.0 100.0
FusionNet (no external features) 100.0 100.0 70.0 100.0
BERT (base, uncased) 100.0 80.0 49.0 81.0
BERT (large, uncased) 100.0 63.0 63.0 79.0
BERT (large, uncased, whole-word masking) 100.0 98.0 98.0 91.0
ALBERT (base, V1) 100.0 86.0 85.0 85.0
ALBERT (xxlarge, V1) 100.0 100.0 100.0 100.0
RoBERTa (base) 100.0 73.0 54.0 64.0
RoBERTa (large) 100.0 39.0 53.0 87.0
ELECTRA (base) 100.0 86.0 64.0 100.0
SpanBERT (base) 57.0 9.0 22.0 60.0
SpanBERT (large) 61.0 38.0 9.0 60.0

Table 13: Performance of modeling approaches when evaluated on bAbI QA #1, bAbI QA #2, bAbI QA #3 and
bAbI QA #4.

bAbI QA #5 bAbI QA #11 bAbI QA #12 bAbI QA #13

RaSoR 98.0 100.00 100.0 100.0
BiDAF 95.0 78.00 100.0 95.0
DocumentReader 96.0 100.00 100.0 100.0
DocumentReader (no external features) 97.0 100.00 100.0 100.0
BiDAF++ 96.0 100.00 100.0 95.0
MnemonicReader 95.0 100.00 100.0 95.0
MnemonicReader (no external features) 95.0 100.00 100.0 100.0
QANet 95.0 100.00 100.0 95.0
FusionNet 98.0 100.00 100.0 100.0
FusionNet (no external features) 98.0 100.00 100.0 100.0
BERT (base, uncased) 95.0 100.00 100.0 97.0
BERT (large, uncased) 95.0 100.00 100.0 100.0
BERT (large, uncased, whole-word masking) 96.0 100.00 100.0 100.0
ALBERT (base, V1) 95.0 100.00 100.0 100.0
ALBERT (xxlarge, V1) 99.0 100.00 100.0 100.0
RoBERTa (base) 95.0 98.99 89.0 95.0
RoBERTa (large) 98.0 100.00 100.0 95.0
ELECTRA (base) 95.0 100.00 100.0 97.0
SpanBERT (base) 36.0 74.75 75.0 95.0
SpanBERT (large) 43.0 81.82 77.0 95.0

Table 14: Performance of modeling approaches when evaluated on bAbI QA #5, bAbI QA #11, bAbI QA #12 and
bAbI QA #13.

Figure 10 shows how well the bAbI tasks (9000) training examples concur with SQuAD.
Table 16 and Table 17 and Table 18 show the performance of each modeling approach on each existing

of the bAbI tasks (9000 training examples).



bAbI QA #14 bAbI QA #15 bAbI QA #16

RaSoR 97.0 73.00 64.0
BiDAF 95.0 66.00 61.0
DocumentReader 96.0 68.00 63.0
DocumentReader (no external features) 99.0 68.00 64.0
BiDAF++ 92.0 65.00 61.0
MnemonicReader 99.0 63.00 65.0
MnemonicReader (no external features) 99.0 67.00 65.0
QANet 62.0 64.00 58.0
FusionNet 100.0 69.00 64.0
FusionNet (no external features) 99.0 100.00 64.0
BERT (base, uncased) 84.0 60.56 50.0
BERT (large, uncased) 88.0 56.34 52.0
BERT (large, uncased, whole-word masking) 96.0 100.00 62.0
ALBERT (base, V1) 78.0 60.56 80.0
ALBERT (xxlarge, V1) 100.0 100.00 100.0
RoBERTa (base) 81.0 61.97 47.0
RoBERTa (large) 77.0 100.00 44.0
ELECTRA (base) 87.0 100.00 47.0
SpanBERT (base) 37.0 46.48 36.0
SpanBERT (large) 37.0 59.15 49.0

Table 15: Performance of modeling approaches when evaluated on bAbI QA #14, bAbI QA #15 and bAbI QA
#16.
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Figure 10: Many modeling approaches perform perfectly on bAbI tasks when training on 9,000 examples, limiting
their ability to recapitulate historical modeling progress on SQuAD.



bAbI QA #1
(9K)

bAbI QA #2
(9K)

bAbI QA #3
(9K)

bAbI QA #4
(9K)

RaSoR 100.00 100.0 89.5 79.50
BiDAF 100.00 100.0 100.0 100.00
DocumentReader 100.00 100.0 100.0 100.00
DocumentReader (no external features) 100.00 100.0 100.0 100.00
BiDAF++ 100.00 100.0 100.0 100.00
MnemonicReader 100.00 100.0 57.8 100.00
MnemonicReader (no external features) 100.00 100.0 57.8 100.00
QANet 100.00 80.7 45.3 58.20
FusionNet 100.00 100.0 100.0 100.00
FusionNet (no external features) 100.00 100.0 100.0 100.00
BERT (base, uncased) 100.00 99.9 99.6 100.00
BERT (large, uncased) 100.00 100.0 100.0 100.00
BERT (large, uncased, whole-word masking) 100.00 100.0 100.0 100.00
ALBERT (base, V1) 100.00 100.0 100.0 100.00
ALBERT (xxlarge, V1) 100.00 100.0 100.0 100.00
RoBERTa (base) 100.00 100.0 100.0 100.00
RoBERTa (large) 100.00 100.0 100.0 100.00
ELECTRA (base) 100.00 100.0 100.0 100.00
SpanBERT (base) 56.77 99.5 99.9 79.37
SpanBERT (large) 56.57 95.4 34.3 54.21

Table 16: Performance of modeling approaches when evaluated on bAbI QA #1 (9K Examples), bAbI QA #2 (9K
Examples), bAbI QA #3 (9K Examples) and bAbI QA #4 (9K Examples).

bAbI QA #5
(9K)

bAbI QA #11
(9K)

bAbI QA #12
(9K)

bAbI QA #13
(9K)

RaSoR 100.0 100.00 100.0 100.00
BiDAF 99.9 100.00 100.0 100.00
DocumentReader 99.9 100.00 100.0 100.00
DocumentReader (no external features) 99.9 100.00 100.0 100.00
BiDAF++ 100.0 100.00 100.0 100.00
MnemonicReader 100.0 100.00 100.0 100.00
MnemonicReader (no external features) 100.0 100.00 100.0 100.00
QANet 99.7 100.00 100.0 100.00
FusionNet 100.0 100.00 100.0 100.00
FusionNet (no external features) 100.0 100.00 100.0 100.00
BERT (base, uncased) 99.9 100.00 100.0 100.00
BERT (large, uncased) 99.9 100.00 100.0 100.00
BERT (large, uncased, whole-word masking) 99.9 100.00 100.0 100.00
ALBERT (base, V1) 99.9 100.00 100.0 100.00
ALBERT (xxlarge, V1) 100.0 100.00 100.0 100.00
RoBERTa (base) 99.9 100.00 100.0 100.00
RoBERTa (large) 99.9 100.00 100.0 100.00
ELECTRA (base) 100.0 100.00 100.0 100.00
SpanBERT (base) 99.9 92.08 72.8 94.89
SpanBERT (large) 99.9 59.32 100.0 93.19

Table 17: Performance of modeling approaches when evaluated on bAbI QA #5 (9K Examples), bAbI QA #11 (9K
Examples), bAbI QA #12 (9K Examples) and bAbI QA #13 (9K Examples).



bAbI QA #14 (9K) bAbI QA #15 (9K) bAbI QA #16 (9K)

RaSoR 100.0 100.00 50.2
BiDAF 100.0 100.00 50.6
DocumentReader 100.0 100.00 50.5
DocumentReader (no external features) 100.0 100.00 53.3
BiDAF++ 100.0 100.00 50.4
MnemonicReader 100.0 52.30 50.2
MnemonicReader (no external features) 100.0 53.70 50.4
QANet 100.0 51.80 50.6
FusionNet 100.0 100.00 56.5
FusionNet (no external features) 100.0 100.00 50.8
BERT (base, uncased) 100.0 100.00 100.0
BERT (large, uncased) 100.0 100.00 100.0
BERT (large, uncased, whole-word masking) 100.0 100.00 100.0
ALBERT (base, V1) 100.0 100.00 100.0
ALBERT (xxlarge, V1) 100.0 100.00 100.0
RoBERTa (base) 100.0 100.00 100.0
RoBERTa (large) 100.0 100.00 100.0
ELECTRA (base) 100.0 100.00 100.0
SpanBERT (base) 86.6 63.30 48.3
SpanBERT (large) 66.6 52.78 44.2

Table 18: Performance of modeling approaches when evaluated on bAbI QA #14 (9K Examples), bAbI QA #15
(9K Examples) and bAbI QA #16 (9K Examples).



E FuzzySyntheticQA Construction Details

Figure 11 provides an overview of the construction of FuzzySyntheticQA.

Generation Model
(e.g., Bag of Words, 3-gram LM, PCFG)

“damage familiar file false talented brush muscle 
lazy succeed fascinated strange sticky befitting 
knit plausible cup cultured upbeat lighten fruit”

Passage
Generation

“lazy succeed [MASK] strange sticky befitting”

“achieve [MASK] sticky odd”

Randomly generate passage

Cloze Question
Generation

Select an answer token

Mask the answer token from its context

Corrupt cloze question by replacing tokens with 
synonyms, word dropout, and local shuffling

Answer
Generation

“fascinated”

Figure 11: Constructing a FuzzySyntheticQA example by generating a passage, answer, and cloze question.

To efficiently replace tokens with related tokens, we consider each token’s 100 approximate nearest
neighbors as replacement candidates. In particular, we use Annoy (Bernhardsson and the Annoy develop-
ment team, 2020) to perform the approximate nearest neighboor look-ups. Similarities are derived from
the Euclidean distance of normalized vectors between two tokens.



F Full Results on FuzzySyntheticQA

Figure 12 shows that changing the passage generation method in FuzzySyntheticQA has a minimal effect
on concurrence. We experiment with generating passages from a 3-gram language model, a probabilistic
context-free grammar, a large neural language model (GPT-2 1.5B; Radford et al., 2019), and by taking
real Wikipedia paragraphs.

The 3-gram language model is trained with maximum likelihood estimation on WikiText-103 (Merity
et al., 2017). The PCFG is trained with maximum likelihood estimation on the Penn Treebank (Marcus
et al., 1993). Lastly, we take GPT-2 1.5B generations from the officially-released output samples
(github.com/openai/gpt-2-output-dataset; generated with top-k truncated sampling with k = 40).

Table 19 and Table 20 show the performance of each modeling approach on each of our constructed
synthetic fuzzy pattern-matching benchmarks.
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Figure 12: Even with progressively more natural passages, FuzzySyntheticQA continues to have low overall con-
currence with SQuAD—this low concurrence is not trivially caused by the lack of natural passages, and simply
making our passages more closely resemble natural language will not yield high concurrence.

Synthetic Fuzzy
Pattern-Matching

3-gram LM Synthetic
Fuzzy

Pattern-Matching

PCFG Synthetic Fuzzy
Pattern-Matching

RaSoR 37.01 63.00 64.60
BiDAF 38.62 67.50 74.23
DocumentReader 49.32 71.11 73.28
DocumentReader (no external features) 49.24 71.57 72.49
BiDAF++ 56.89 76.30 80.92
MnemonicReader 61.50 79.56 85.05
MnemonicReader (no external features) 61.24 79.13 83.91
QANet 59.60 74.53 78.80
FusionNet 64.71 79.72 86.21
FusionNet (no external features) 63.80 80.05 85.89
BERT (base, uncased) 4.51 70.65 70.49
BERT (large, uncased) 40.11 65.79 70.17
BERT (large, uncased, whole-word masking) 0.70 58.60 76.73
ALBERT (base, V1) 44.28 75.00 78.08
ALBERT (xxlarge, V1) 53.79 77.01 82.66
RoBERTa (base) 44.92 67.78 74.54
RoBERTa (large) 0.49 61.71 57.38
ELECTRA (base) 44.85 73.42 76.69
SpanBERT (base) 0.74 3.92 73.66
SpanBERT (large) 0.40 9.74 62.51

Table 19: Performance of modeling approaches when evaluated on Synthetic Fuzzy Pattern-Matching, 3-gram LM
Synthetic Fuzzy Pattern-Matching and PCFG Synthetic Fuzzy Pattern-Matching.

https://github.com/openai/gpt-2-output-dataset


GPT-2 Synthetic Fuzzy
Pattern-Matching

English Wikipedia Synthetic Fuzzy
Pattern-Matching

RaSoR 48.20 52.37
BiDAF 62.16 60.52
DocumentReader 57.97 62.45
DocumentReader (no external features) 58.73 62.50
BiDAF++ 69.45 65.74
MnemonicReader 74.67 76.15
MnemonicReader (no external features) 74.18 75.71
QANet 51.45 73.79
FusionNet 76.48 76.73
FusionNet (no external features) 76.17 76.85
BERT (base, uncased) 58.07 25.52
BERT (large, uncased) 55.78 7.29
BERT (large, uncased, whole-word masking) 38.34 40.13
ALBERT (base, V1) 72.16 72.62
ALBERT (xxlarge, V1) 72.09 73.86
RoBERTa (base) 68.14 58.60
RoBERTa (large) 67.41 54.76
ELECTRA (base) 65.07 66.33
SpanBERT (base) 9.26 8.40
SpanBERT (large) 71.61 6.40

Table 20: Performance of modeling approaches when evaluated on GPT-2 Synthetic Fuzzy Pattern-Matching and
English Wikipedia Synthetic Fuzzy Pattern-Matching.



G WikidataSyntheticQA Construction Details

Figure 13 summarizes the data generation procedure for WikidataSyntheticQA.
Inverses of Properties. Some of our generated questions use the inverse relationships between two
properties. To obtain the inverse relationship for a given property, we first retrieve its list of property
constraints by using Wikidata property P2302 (property constraint). If Q21510855 (inverse constraint)
is present, we then retrieve the corresponding property of this inverse relationship. If the inverse constraint
is not present, we check the corresponding property of P7087 (inverse label item), which outputs the
item with a label of the inverse relationship of the property.
Entity Hyponyms. Some of our generated questions replace entities with their hyponyms. To obtain the
hyponyms for a given entity, we retrieve any object entities of the P31 (instance of) and P279 (subclass
of) properties.
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Figure 13: Constructing a WikidataSyntheticQA example by generating a passage, answer, and cloze question.



H Full Results on WikidataSyntheticQA

Table 21 shows the performance of each modeling approach on WikidataSyntheticQA.

Synthetic Wikidata

RaSoR 63.67
BiDAF 68.69
DocumentReader 67.66
DocumentReader (no external features) 68.03
BiDAF++ 70.43
MnemonicReader 75.04
MnemonicReader (no external features) 74.31
QANet 73.12
FusionNet 74.52
FusionNet (no external features) 73.90
BERT (base, uncased) 73.68
BERT (large, uncased) 78.01
BERT (large, uncased, whole-word masking) 81.56
ALBERT (base, V1) 77.23
ALBERT (xxlarge, V1) 86.29
RoBERTa (base) 77.75
RoBERTa (large) 82.79
ELECTRA (base) 76.86
SpanBERT (base) 78.50
SpanBERT (large) 84.26

Table 21: Performance of modeling approaches when evaluated on Synthetic Wikidata.



I Full Results on Subsampled SQuAD

Table 22 and Table 23 show the performance of each modeling approach on subsamples of the SQuAD
benchmark.

SQuAD 1.1

All 1K Examples 10K Examples

RaSoR 64.86 15.52 49.44
BiDAF 67.39 7.96 48.54
DocumentReader 69.66 34.66 56.42
DocumentReader (no external features) 69.21 30.69 54.82
BiDAF++ 69.49 18.62 57.48
MnemonicReader 73.02 30.67 58.91
MnemonicReader (no external features) 72.67 29.46 57.79
QANet 72.41 7.18 48.15
FusionNet 72.90 37.52 59.97
FusionNet (no external features) 72.24 35.55 58.69
BERT (base, uncased) 81.46 31.80 70.34
BERT (large, uncased) 84.17 49.08 75.47
BERT (large, uncased, whole-word masking) 87.32 69.19 81.78
ALBERT (base, V1) 81.86 57.57 74.55
ALBERT (xxlarge, V1) 89.07 76.36 86.19
RoBERTa (base) 83.37 55.01 77.30
RoBERTa (large) 86.96 62.64 82.56
ELECTRA (base) 85.88 62.05 78.31
SpanBERT (base) 86.20 65.80 80.72
SpanBERT (large) 88.74 75.00 85.06

Table 22: Performance of modeling approaches when evaluated on SQuAD, SQuAD (1K Examples) and SQuAD
(10K Examples).

SQuAD 1.1

20K Examples 40K Examples 60K Examples

RaSoR 55.13 60.37 62.95
BiDAF 57.29 62.35 65.25
DocumentReader 61.84 65.45 68.27
DocumentReader (no external features) 59.66 64.47 67.09
BiDAF++ 62.25 66.42 68.62
MnemonicReader 64.74 69.09 70.86
MnemonicReader (no external features) 63.71 68.65 70.32
QANet 61.02 66.55 69.74
FusionNet 64.74 69.14 70.98
FusionNet (no external features) 63.28 67.98 69.93
BERT (base, uncased) 74.84 78.24 80.05
BERT (large, uncased) 79.27 81.83 83.25
BERT (large, uncased, whole-word masking) 84.47 85.78 86.75
ALBERT (base, V1) 77.05 79.95 81.02
ALBERT (xxlarge, V1) 86.91 88.02 88.63
RoBERTa (base) 79.56 81.62 82.37
RoBERTa (large) 84.26 86.37 87.18
ELECTRA (base) 81.75 83.95 85.01
SpanBERT (base) 82.54 84.17 85.39
SpanBERT (large) 86.21 87.33 87.82

Table 23: Performance of modeling approaches when evaluated on SQuAD (20K Examples), SQUAD (40K Ex-
amples) and SQuAD (60K Examples).


