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Abstract

While recent language models have the abil-
ity to take long contexts as input, relatively
little is known about how well they use
longer context. We analyze the performance
of language models on two tasks that require
identifying relevant information in their in-
put contexts: multi-document question an-
swering and key-value retrieval. We find that
performance can degrade significantly when
changing the position of relevant informa-
tion, indicating that current language models
do not robustly make use of information in
long input contexts. In particular, we observe
that performance is often highest when rele-
vant information occurs at the beginning or
end of the input context, and significantly
degrades when models must access relevant
information in the middle of long contexts,
even for explicitly long-context models. Our
analysis provides a better understanding of
how language models use their input context
and provides new evaluation protocols for
future long-context language models.

1 Introduction

Language models have become an important and
flexible building block in a variety of user-facing
language technologies, including conversational
interfaces, search and summarization, and collabo-
rative writing (Shuster et al., 2022; Thoppilan et al.,
2022; Lee et al., 2022, inter alia). These models
perform downstream tasks primarily via prompting:
all relevant task specification and data to process is
formatted as a textual input context, and the model
returns a generated text completion. These input
contexts can contain thousands of tokens, espe-
cially when language models are used to process
long documents (e.g., legal or scientific documents,
conversation histories, etc.) or when language mod-
els are augmented with external information (e.g.,
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Figure 1: Changing the location of relevant information
(in this case, the position of the passage that answers an
input question) within the language model’s input con-
text results in a U-shaped performance curve—models
are better at using relevant information that occurs at the
very beginning (primacy bias) or end of its input context
(recency bias), and performance degrades significantly
when models must access and use information located
in the middle of its input context.

relevant documents from a search engine, database
query results, etc; Petroni et al., 2020; Ram et al.,
2023; Shi et al., 2023; Mallen et al., 2023; Schick
et al., 2023, inter alia).

Handling these use-cases requires language mod-
els to successfully operate over long sequences. Ex-
isting language models are generally implemented
with Transformers (Vaswani et al., 2017), which re-
quire memory and compute that increases quadrat-
ically in sequence length. As a result, Trans-
former language models were often trained with
relatively small context windows (between 512-
2048 tokens). Recent improvements in hardware
(e.g., faster GPUs with more memory) and algo-
rithms (Dai et al., 2019; Dao et al., 2022; Poli et al.,
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2023; Rubin and Berant, 2023, inter alia) have
resulted in language models with larger context
windows (e.g., 4096, 32K, and even 100K tokens),
but it remains unclear how these extended-context
language models make use of their input contexts
when performing downstream tasks.

We empirically investigate this question via
controlled experiments with a variety of state-of-
the-art open (MPT-30B-Instruct, LongChat-13B
(16K)) and closed (OpenAI’s GPT-3.5-Turbo and
Anthropic’s Claude-1.3) language models in set-
tings that require accessing and using information
within an input context. In particular, our experi-
ments make controlled changes to the input context
size and the position of the relevant information
within the input context and study their effects on
language model performance. If language models
can robustly use information within long input con-
texts, then their performance should be minimally
affected by the position of the relevant information
in the input context.

We first experiment with multi-document ques-
tion answering, which requires models to reason
over provided documents to find relevant informa-
tion and use it to answer a given question; this task
mimics the retrieval-augmented generation setup
underlying many commercial generative search and
question answering applications (e.g., Bing Chat).
In this setting, we control (i) the input context
length by changing the number of documents in
the input context (akin to retrieving more or less
documents in retrieval-augmented generation), and
(ii) control the position of the relevant information
within the input context by changing the order of
the documents to place the relevant document at
the beginning, middle or end of the context.

We find that changing the position of relevant
information in the input context can substantially
affect model performance, indicating that current
language models do not robustly access and use
information in long input contexts. Furthermore,
we observe a distinctive U-shaped performance
curve (Figure 1); language model performance is
highest when relevant information occurs at the
very beginning (primacy bias) or end of its in-
put context (recency bias), and performance sig-
nificantly degrades when models must access and
use information in the middle of their input con-
text (§2.3). For example, when relevant infor-
mation is placed in the middle of its input con-
text, GPT-3.5-Turbo’s performance on the multi-

document question task is lower than its perfor-
mance when predicting without any documents (i.e.,
the closed-book setting; 56.1%). Furthermore, we
find that models often have identical performance
to their extended-context counterparts, indicating
that extended-context models are not necessarily
better at using their input context (§2.3).

Given that language models struggle to retrieve
and use relevant information in the multi-document
question answering task, to what extent can lan-
guage models even retrieve from their input con-
texts? We study this question with a synthetic key-
value retrieval task, which is designed to be a mini-
mal testbed for the basic ability to retrieve matching
tokens from the input context. In this task, models
are given a collection of JSON-formatted key-value
pairs and must return the value associated with a
specific key. Similar to the multi-document QA
task, the key-value retrieval task admits controlled
changes to the input context length (adding more
key-value pairs) and the position of relevant in-
formation. Although some models perform the
synthetic key-value retrieval task perfectly, other
models struggle to simply retrieve matching tokens
that occur in the middle of their input context and
continue to exhibit a U-shaped performance curve.

To better understand why language models strug-
gle to robustly access and use information in their
input contexts, we study the role of model archi-
tecture (decoder-only vs. encoder-decoder), query-
aware contextualization, and instruction fine-tuning
(§4). We find that:

• Encoder-decoder models are relatively robust
to changes in the position of relevant informa-
tion within their input context, but only when
evaluated on sequences within its training-
time sequence length. When evaluated on
sequences longer than those seen during train-
ing, we observe a U-shaped performance
curve (§4.1).

• Query-aware contextualization (placing the
query before and after the documents or key-
value pairs) enables near-perfect performance
on the synthetic key-value task, but minimally
changes trends in multi-document QA (§4.2).

• Even base language models (i.e., without in-
struction fine-tuning) show a U-shaped per-
formance curve as we vary the position of
relevant information in the input context.

Our results indicate that prompting language



models with longer input contexts is a trade-off—
providing the language model with more informa-
tion may help it perform the downstream task, but
it also increases the amount of content that the
model must reason over, potentially decreasing ac-
curacy. To better understand this trade-off in prac-
tice, we perform a case study with retriever-reader
models on open-domain question answering (§5).
In contrast to our controlled multi-document QA
task, where the context always contains exactly
one document that answers the question, none or
many of the top k documents may contain the an-
swer in the open-domain QA setting. When re-
trieving from Wikipedia to answer queries from
NaturalQuestions-Open, we find that model perfor-
mance saturates long before retriever recall satu-
rates, indicating that current models fail to effec-
tively use additional retrieved documents—using
50 documents instead of 20 retrieved documents
only marginally improves performance (∼1.5% for
GPT-3.5-Turbo and ∼1% for claude-1.3).

Our analysis provides a better understanding of
how language models use their input context and
introduces new evaluation protocols for future long-
context models; to claim that a language model can
robustly use information within long input con-
texts, it is necessary to show that its performance
is minimally affected by the position of the rele-
vant information in the input context (e.g., minimal
difference in best- and worst-case performance).
To facilitate further work on understanding and
improving how language models use their input
context, we release our code and evaluation data.1

2 Multi-Document Question Answering

Our goal is to better understand how language mod-
els use their input context. To this end, we analyze
model performance on multi-document question
answering, which requires models to find relevant
information within an input context and use it to
answer the question. In particular, we make con-
trolled changes to the length of the input context
and the position of the relevant information and
measure changes in task performance.

2.1 Experimental Setup

In the multi-document question answering task, the
model inputs are (i) a question to answer and (ii) k
documents (e.g., passages from Wikipedia), where
exactly one of the documents contains the answer

1nelsonliu.me/papers/lost-in-the-middle

to the question and k − 1 “distractor” documents
do not. This task requires the model to access the
document that contains the answer within its input
context and use it to answer the question. Figure 2
presents an example.

We instantiate this task with data from
NaturalQuestions-Open (Lee et al., 2019;
Kwiatkowski et al., 2019), which contains
historical queries issued to the Google search
engine, coupled with human-annotated answers
extracted from Wikipedia. In particular, we take
the 2655 queries where the annotated long answer
is a paragraph (as opposed to a list or a table). We
use passages (chunks of at most 100 tokens) from
Wikipedia as documents within our input contexts.
For each of the queries, we need a document
that contains the answer and k − 1 distractor
documents that do not contain the answer. To
obtain a document that answers the question, we
use the Wikipedia paragraph that contains the
answer from the NaturalQuestions annotations.

To collect k−1 distractor documents that do not
contain the answer, we use a retrieval system (Con-
triever, fine-tuned on MS-MARCO; Izacard et al.,
2021) to retrieve the k − 1 Wikipedia chunks that
are most relevant to the query and do not contain
any of the NaturalQuestions-annotated answers.2,3

In the input context, the distractor documents are
presented in order of decreasing relevance.4

To modulate the position of relevant information
within the input context, we adjust the order of the
documents to change the position of the document
that contains the answer (Figure 3). To modulate
the input context length in this task, we increase or
decrease the number of retrieved documents that
do not contain the answer (Figure 4).

Following Kandpal et al. (2022) and Mallen et al.
(2023), we use accuracy as our primary evaluation
metric, judging whether any of the correct answers
(as taken from the NaturalQuestions annotations)
appear in the predicted output.

2Ambiguity in NaturalQuestions-Open means that a small
number of distractor passages may contain a reasonable an-
swer. We additionally run experiments on subset of unam-
biguous questions, finding similar results and conclusions; see
Appendix A.

3We also explored using random documents as distractors,
see Appendix B for more details.

4Since there might be a prior over “search results” appear-
ing in ranked order, we explored randomly ordering the k − 1
distractor documents and mentioning that the documents are
randomly ordered in the task description, but found the same
trends. See Appendix C for more details.
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Write a high-quality answer for the given question using only the provided search 
results (some of which might be irrelevant).

Document [1](Title: Asian Americans in science and technology) Prize in physics for 
discovery of the subatomic particle J/ψ. Subrahmanyan Chandrasekhar shared...
Document [2](Title: List of Nobel laureates in Physics) The first Nobel Prize in 
Physics was awarded in 1901 to Wilhelm Conrad Röntgen, of Germany, who received...
Document [3](Title: Scientist) and pursued through a unique method, was essentially 
in place. Ramón y Cajal won the Nobel Prize in 1906 for his remarkable...

Question: who got the first nobel prize in physics
Answer:

Input Context

Wilhelm Conrad Röntgen
Desired Answer

Figure 2: Example of the multi-document question answering task, with an input context and the desired model
answer. The document containing the answer is bolded within the input context here for clarity.

Write a high-quality answer for the given question 
using only the provided search results (some of 
which might be irrelevant).

Document [1](Title: List of Nobel laureates in 
Physics) ...
Document [2](Title: Asian Americans in science and 
technology) ...
Document [3](Title: Scientist) ...

Question: who got the first nobel prize in physics
Answer:

Input Context

Wilhelm Conrad Röntgen
Desired Answer

Figure 3: Modulating the position of relevant informa-
tion within the input context for the multi-document
question answering example presented in Figure 2. Re-
ordering the documents in the input context does not
affect the desired output.

Our experimental setup is similar to the needle-
in-a-haystack experiments of Ivgi et al. (2023), who
compare question answering performance when the
relevant paragraph is placed (i) at the beginning of
the input or (ii) a random position within the in-
put. They find that encoder-decoder models have
significantly higher performance when relevant in-
formation is placed at the start of the input context.
In contrast, we study finer-grained changes in the
position of relevant information.

2.2 Models

We analyze several state-of-the-art open and closed
language models. We use greedy decoding when
generating outputs and leave exploration of other
decoding methods to future work. We use a stan-
dard set of prompts for each model (Figure 2).

Write a high-quality answer for the given question 
using only the provided search results (some of 
which might be irrelevant).

Document [1](Title: Asian Americans in science and 
technology) ...
Document [2](Title: List of Nobel laureates in 
Physics) ...
Document [3](Title: Scientist) ...
Document [4](Title: Norwegian Americans) ...
Document [5](Title: Maria Goeppert Mayer) ...

Question: who got the first nobel prize in physics
Answer:

Input ContextInput Context

Wilhelm Conrad Röntgen
Desired Answer

Figure 4: Modulating the input context length of the
multi-document question answering example presented
in Figure 2. Adding documents that do not contain the
answer increases the length of the input context, but
does not affect the desired output.

Open models. We experiment with MPT-30B-
Instruct, which has a maximum context length of
8192 tokens. The model was initially pre-trained
on 1 trillion tokens using 2048-token sequences,
followed by an additional sequence length adapta-
tion pre-training phase on 50 billion tokens using
8192-token sequences. MPT-30B-Instruct uses AL-
iBi (Press et al., 2022) to represent positional infor-
mation. We also evaluate LongChat-13B (16K) (Li
et al., 2023), which extends the LLaMA-13B (Tou-
vron et al., 2023a) context window from 2048 to
16384 tokens by using condensed rotary positional
embeddings before fine-tuning with 16384-token
sequences.

Closed models. We use the OpenAI API to ex-
periment with GPT-3.5-Turbo and GPT-3.5-Turbo
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Figure 5: The effect of changing the position of relevant information (document containing the answer) on multi-
document question answering performance. Lower positions are closer to the start of the input context. Performance
is highest when relevant information occurs at the very start or end of the context, and rapidly degrades when models
must reason over information in the middle of their input context.

(16K).5 GPT-3.5-Turbo has a maximum context
length of 4K tokens, and GPT-3.5-Turbo (16K) is a
version with an extended maximum context length
of 16K tokens. We evaluate Claude-1.3 and Claude-
1.3 (100K) with the Anthropic API; Claude-1.3
has a maximum context length of 8K tokens, and
Claude-1.3 (100K) has an extended context length
of 100K tokens. 6

2.3 Results and Discussion

We experiment with input contexts containing 10,
20, and 30 total documents. Figure 5 presents multi-
document question answering performance when
varying the position of relevant information within
the input context. To contextualize model perfor-
mance, we also evaluate on the closed-book and
oracle settings (Table 1). In the closed-book setting,
models are not given any documents in their input
context, and must rely on their parametric memory
to generate the correct answer. On the other hand,
in the oracle setting, language models are given the
single document that contains the answer and must
use it to answer the question.

Model performance is highest when relevant in-
formation occurs at the beginning or end of its
input context. As illustrated in Figure 5, chang-
ing the position of relevant information in the in-
put context leads to substantial decreases in model
performance. In particular, we see a distinctive U-

5We use the 0613 OpenAI model versions.
6We also evaluate GPT-4 (8K) on a subset of multi-

document QA experiments, finding similar results and trends
as other models (though GPT-4 has higher absolute perfor-
mance). Evaluating GPT-4 on the full multi-document QA
and key-value retrieval experiments would cost upwards of
$6000. See Appendix D for GPT-4 results and discussion.

Model Closed-Book Oracle

LongChat-13B (16K) 35.0% 83.4%
MPT-30B-Instruct 31.5% 81.9%
GPT-3.5-Turbo 56.1% 88.3%
GPT-3.5-Turbo (16K) 56.0% 88.6%
Claude-1.3 48.3% 76.1%
Claude-1.3 (100K) 48.2% 76.4%

Table 1: Closed-book and oracle accuracy of language
models on the multi-document question answering task.

shaped performance curve—models are often much
better at using relevant information that occurs at
the very beginning (primacy bias) and very end of
contexts (recency bias), and suffer degraded perfor-
mance when forced to use information within the
middle of its input context. For example, GPT-3.5-
Turbo’s multi-document QA performance can drop
by more than 20%—in the worst case, performance
in 20- and 30-document settings is lower than per-
formance without any input documents (i.e., closed-
book performance; 56.1%). These results indicate
that current models cannot effectively reason over
their entire context window when prompted for
downstream tasks.

Extended-context models are not necessarily
better at using input context. When the input
context fits in the context window of both a model
and its extended-context counterpart, we see that
performance between them is nearly identical. For
example, the 10- and 20-document settings both
fit in the context window of GPT-3.5-Turbo and
GPT-3.5-Turbo (16K), and we observe that their
performance as a function of position of relative
information is nearly superimposed (solid purple
and dashed brown series in Figure 5). These results



Extract the value corresponding to the specified key in the JSON object below.

JSON data:
{"2a8d601d-1d69-4e64-9f90-8ad825a74195": "bb3ba2a5-7de8-434b-a86e-a88bb9fa7289",
 "a54e2eed-e625-4570-9f74-3624e77d6684": "d1ff29be-4e2a-4208-a182-0cea716be3d4",
 "9f4a92b9-5f69-4725-ba1e-403f08dea695": "703a7ce5-f17f-4e6d-b895-5836ba5ec71c",
 "52a9c80c-da51-4fc9-bf70-4a4901bc2ac3": "b2f8ea3d-4b1b-49e0-a141-b9823991ebeb",
 "f4eb1c53-af0a-4dc4-a3a5-c2d50851a178": "d733b0d2-6af3-44e1-8592-e5637fdb76fb"}

Key: "9f4a92b9-5f69-4725-ba1e-403f08dea695"
Corresponding value:

Input Context

703a7ce5-f17f-4e6d-b895-5836ba5ec71c
Desired Output

Figure 6: Example of the key-value retrieval task, with an input context and the desired model output. Given a key,
the goal is to return the associated value. All keys and values are 128-bit UUIDs. The relevant key-value pair for
answering the query is bolded here within the input context for clarity.

indicate that extended-context models are not nec-
essarily better than their non-extended counterparts
at using their input context.

3 How Well Can Language Models
Retrieve From Input Contexts?

Given that language models struggle to retrieve
and use information from the middle of their input
contexts in the multi-document question answering
task, to what extent can they simply retrieve from
input contexts? We study this question with a syn-
thetic key-value retrieval task, which is designed to
provide a minimal testbed for the basic ability to
retrieve matching tokens from an input context.

3.1 Experimental Setup

In our synthetic key-value retrieval task, the inputs
are (i) a string-serialized JSON object with k key-
value pairs, where each of the keys and values are
unique, randomly-generated UUIDs and (ii) a key
within the aforementioned JSON object. The goal
is to return the value associated with the specified
key. Thus, each JSON object contains one relevant
key-value pair (where the value is to be returned),
and k − 1 irrelevant “distractor” key-value pairs.
Figure 6 provides an example input context and its
corresponding desired output. We again measure
accuracy by evaluating whether the correct value
appears in the predicted output.

Our synthetic key-value retrieval task shares sim-
ilar goals with the Little Retrieval Test of Papail-
iopoulos et al. (2023) and the fine-grained line re-
trieval task of Li et al. (2023), but we explicitly
seek to distill and simplify the task by removing as

much natural language semantics as possible (using
random UUIDs instead), since language features
may present potential confounders. For example,
Transformer language models may have varying
sensitivity to different linguistic features in their
input (O’Connor and Andreas, 2021).

To modulate the position of relevant information
within the input context, we change the position
of the key to retrieve within the serialized JSON
object. To modulate the input context length, we
change the number of input JSON key-value pairs
k by adding or removing random keys, changing
the number of distractor key-value pairs.

3.2 Results and Discussion
We experiment with input contexts containing
75, 140, and 300 key-value pairs (500 examples
each). We use the same set of models as the multi-
document question answering experiments, see
§2.2 for more details.

Figure 7 presents key-value retrieval perfor-
mance. Claude-1.3 and Claude-1.3 (100K) do
nearly perfectly on all evaluated input context
lengths, but other models struggle, especially
when contexts have 140 or 300 key-value pairs—
although the synthetic key-value retrieval task only
requires identifying exact match within the input
context, not all models achieve high performance.

Similar to our multi-document QA results, GPT-
3.5-Turbo, GPT-3.5-Turbo (16K), and MPT-30B-
Instruct have the lowest performance when they
must access key-value pairs in the middle of their
input context. LongChat-13B (16K) exhibits a dif-
ferent trend in the 140 key-value setting; we quali-
tatively observe that when relevant information is
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Figure 7: The effect of changing the input context length and the position of relevant information on key-value
retrieval performance. Lower positions are closer to the start of the input context. Although some models show
perfect accuracy on this synthetic task (e.g., Claude-1.3 and Claude-1.3 (100K)), we see again that performance is
often highest when relevant information is occurs at the very start or end of the context, and rapidly degrades when
models must retrieve from the middle of the input context.

placed at the start of the input context, LongChat-
13B (16K) tends to generate code to retrieve the
key, rather than outputting the value directly.

4 Why Are Language Models Not Robust
to Changes in the Position of Relevant
Information?

Our multi-document question answering and key-
value retrieval results show that language models
struggle to robustly access and use information in
long input contexts, since performance degrades
significantly when changing the position of rele-
vant information. To better understand why, we per-
form some preliminary investigations into the role
of model architecture (decoder-only vs. encoder-
decoder), query-aware contextualization, and in-
struction fine-tuning.

4.1 Effect of Model Architecture
The open models we evaluated are all decoder-only
models—at each timestep, they may only attend
to prior tokens. To better understand the poten-
tial effects of model architecture on how language
model use context, we compare decoder-only and
encoder-decoder language models.

We experiment with Flan-T5-XXL (Raffel et al.,
2020; Chung et al., 2022) and Flan-UL2 (Tay et al.,
2023). Flan-T5-XXL is trained with a sequences
of 512 tokens (encoder and decoder). Flan-UL2 is
initially trained with sequences of 512 tokens (en-
coder and decoder), but is then pre-trained for an
extra 100K steps with 1024 tokens (encoder and de-
coder) before instruction fine-tuning on sequences
with 2048 tokens in the encoder and 512 tokens
in the decoder. However, since these models use

relative positional embeddings, they can (in prin-
ciple) extrapolate beyond these maximum context
lengths; Shaham et al. (2023) find that both mod-
els can perform well with sequences of up to 8K
tokens.

Figure 8 compares the performance of decoder-
only and encoder-decoder models. When Flan-UL2
is evaluated on sequences within its 2048-token
training-time context window (Figure 8; left sub-
plot), its performance is relatively robust to changes
in the position of relevant information within the
input context (1.9% absolute difference between
best- and worst-case performance). When evalu-
ated on settings with sequences longer than 2048
tokens (Figure 8; center and right), Flan-UL2 per-
formance begins to degrade when relevant informa-
tion is placed in the middle. Flan-T5-XXL shows
a similar trend, where longer input contexts result
in a greater performance degradation when placing
relevant information in the middle of the input con-
text. We hypothesize that encoder-decoder models
may make better use of their context windows be-
cause their bidirectional encoder allows processing
each document in the context of future documents,
potentially improving relative importance estima-
tion between documents.

4.2 Effect of Query-Aware Contextualization

Our multi-document QA and key-value retrieval
experiments place the query (i.e., question to an-
swer or key to retrieve) after the data to process
(i.e., the documents or the key-value pairs). As a
result, decoder-only models cannot attend to query
tokens when contextualizing documents or key-
value pairs, since the query only appears at the end
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Figure 8: When encoder-decoder models (Flan-UL2 and Flan-T5-XXL) evaluated on sequences that are shorter
than their encoder’s training-time maximum sequence length (2048 and 512 tokens, respectively), they are relatively
robust to changes in the position of relevant information within their input context (left subplot). In contrast, when
these models are evaluated on sequences longer than those seen during training (center and right subplots), we
observe a U-shaped performance curve—performance is higher when relevant information occurs at the beginning
or end of the input context, as opposed to the middle of the input context.
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Figure 9: Query-aware contextualization (placing the
query before and after the documents) does not sub-
stantially improve robustness of language models to
changing the position of relevant information in multi-
document QA; performance slightly increases when
relevant information occurs at the very beginning, but
otherwise slightly decreases.

of the prompt and decoder-only models can only
attend to prior tokens at each timestep. In contrast,
encoder-decoder models (which seem more robust
to changes in the position of relevant information;
§4.1) use a bidirectional encoder to contextualize
input contexts—can we use this observation to im-
prove decoder-only models by placing the query be-
fore and after the data, enabling query-aware con-
textualization of documents (or key-value pairs)?

We find that query-aware contextualization dra-
matically improves performance on the key-value
retrieval task—all models achieve near-perfect per-

formance on the 75, 140, and 300 key-value pair
settings. For example, GPT-3.5-Turbo (16K) with
query-aware contextualization achieves perfect per-
formance when evaluated with 300 key-value pairs.

In contrast, without query-aware contextualiza-
tion, the worst-case performance is 45.6% (Fig-
ure 7). Despite the significant impact on key-
value retrieval performance, query-aware contextu-
alization minimally affects performance trends in
the multi-document question answering task (Fig-
ure 9); it slightly improves performance when the
relevant information is located at the very begin-
ning of the input context, but slightly decreases
performance in other settings.

4.3 Effect of Instruction Fine-Tuning

The models we evaluated are all instruction fine-
tuned—after their initial pre-training, they undergo
supervised fine-tuning on a dataset of instructions
and responses. The task specification and/or in-
struction is commonly placed at the beginning of
the input context in supervised instruction fine-
tuning data, which might lead instruction fine-
tuned language models to place more weight on
the start of the input context. To better understand
the potential effects of instruction fine-tuning on
how language models use long input contexts, we
compare the multi-document question answering
performance of MPT-30B-Instruct against its base
model (i.e., before instruction fine-tuning) MPT-
30B. We use the same experimental setup as §2.

Figure 10 compares the multi-document QA
performance of MPT-30B and MPT-30B-Instruct
as a function of the position of the relevant in-
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Figure 10: Multi-document QA performance of MPT-
30B-Instruct compared against its base model (i.e., be-
fore instruction fine-tuning) MPT-30B. Both models
have a U-shaped performance curve, where performance
is much higher when relevant information occurs at the
start or end of the input context, indicating that the
instruction fine-tuning process itself is not necessarily
responsible for these performance trends.

formation in the input context. Surprisingly, we
see that both MPT-30B and MPT-30B-Instruct ex-
hibit a U-shaped performance curve, where perfor-
mance is highest when relevant information occurs
at the very beginning or very end of the context.
Although the absolute performance of MPT-30B-
Instruct is uniformly higher than that of MPT-30B,
their overall performance trends are similar. We
also observe that instruction fine-tuning slightly re-
duces the worst-case performance disparity from
nearly 10% between the base model best- and
worst-case performance to around 4%.

These observations complement prior work,
which found that non-instruction fine-tuned lan-
guage models are biased towards recent tokens (i.e.,
the end of the input context; Khandelwal et al.,
2018; Press et al., 2021). This recency bias has
been observed in past work when evaluating mod-
els on next-word prediction of contiguous text, a
setting where language models minimally benefit
from long-range information (Sun et al., 2021). In
contrast, our results show that language models
are capable of using longer-range information (i.e.,
the beginning of the input context) when prompted
with instruction-formatted data. We hypothesize
that non-instruction fine-tuned language models
learn to use these long contexts from similarly-
formatted data that may occur in Internet text seen
during pre-training, e.g., StackOverflow questions

and answers.
To better understand the effect of additional fine-

tuning and model scale, we also experimented
with Llama-2 models of varying sizes (7B, 13B,
and 70B) with and without additional supervised
fine-tuning and reinforcement learning from hu-
man feedback (Appendix E). We find that the U-
shaped performance curve only appears in suffi-
ciently large language models (with or without ad-
ditional fine-tuning)—the 7B Llama-2 models are
solely recency biased, while the 13B and 70B mod-
els exhibit a U-shaped performance curve. In addi-
tion, we see that the Llama-2 supervised fine-tuning
and reinforcement learning from human feedback
procedure slightly mitigates the positional bias in
smaller models (13B, akin to trends shown when
comparing MPT-30B and MPT-30B-Instruct), but
minimally affects trends on larger models (70B).

5 Is More Context Is Always Better?
A Case Study With Open-Domain QA

Our results indicate that prompting language mod-
els with longer input contexts is a trade-off—
providing the language model with more informa-
tion may help it perform the downstream task, but
it also increases the amount of content that the
model must reason over, potentially decreasing
accuracy. Even if a language model can take in
16K tokens, is it actually beneficial to provide 16K
tokens of context? The answer to this question
is ultimately downstream task-specific since it de-
pends on the marginal value of the added context
and the model’s ability to effectively use long input
contexts, but we perform a case study with open-
domain question answering on NaturalQuestions-
Open to better understand this trade-off in existing
language models.

We use language models in a standard retriever-
reader setup. A retrieval system (Contriever, fine-
tuned on MS-MARCO) takes an input query from
NaturalQuestions-Open and returns the k docu-
ments from Wikipedia with the highest relevance
score. To condition language models on these re-
trieved documents, we simply include them in the
prompt. We evaluate retriever recall and reader
accuracy (whether any of the annotated answers
appear in the predicted output) as a function of the
number of retrieved documents k. We use a subset
of NaturalQuestions-Open where the long answer
is a paragraph (as opposed to a table or a list).

Figure 11 presents retriever recall and open-
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Figure 11: Retriever recall and model performance as a
function of the number of retrieved documents. Model
performance saturates long before retriever recall, indi-
cating that the models have difficulty making use of the
extra retrieved documents.

domain QA results. We see that reader model
performance saturates long before retriever per-
formance saturates, indicating that readers are not
effectively using the extra context. Using more
than 20 retrieved documents only marginally im-
proves reader performance (∼1.5% for GPT-3.5-
Turbo and ∼1% for Claude-1.3), while significantly
increasing the input context length (and thus la-
tency and cost). These results, coupled with the
observation that models are often better at retriev-
ing and using information at the start or end of
the input contexts, suggest that effective rerank-
ing of retrieved documents (pushing relevant infor-
mation closer to the start of the input context) or
ranked list truncation (retrieving fewer documents
when appropriate; Arampatzis et al., 2009) may be
promising directions for improving how language-
model-based readers use retrieved context.

6 Related Work

6.1 Long-Context Language Models

There is much prior work in designing performant
language models with cheaper scaling than Trans-
formers in the context length. Many lines of work
pursue Transformer variants with attention modi-
fications like recurrence (Dai et al., 2019), factor-
izing attention into computationally less intensive
approximations (Beltagy et al., 2020; Zaheer et al.,
2020), or low-rank approximations (Wang et al.,
2020; Peng et al., 2021). Dao et al. (2022) in-
stead provide a faster exact attention by a carefully-

crafted IO-aware CUDA kernel. Separately, there
are attempts to do away with attention entirely to
remove quadratic sequence length complexity, of-
ten through convolution and/or linear RNNs, e.g.,
in RWKV (Peng, 2023), S4 (Gu et al., 2022), or
Hyena (Poli et al., 2023). Many prior efforts evalu-
ate perplexity on a diverse web corpus as a proxy
for the ability to process long contexts; this work
shows that precise knowledge access on long con-
texts may be an added challenge.

6.2 How Do Language Models Use Context?
The pioneering work of Khandelwal et al. (2018)
showed that small LSTM language models make
increasingly coarse use of longer-term context;
Sankar et al. (2019) found similar results in di-
alogue models. In a similar vein, Daniluk et al.
(2017) find that attentive LSTM language mod-
els tend to mainly use recent history. Petroni
et al. (2020) were among the first to demonstrate
the potential of combining context from an in-
formation retrieval system with a pretrained lan-
guage models for unsupervised question answering.
O’Connor and Andreas (2021) found that many
information-destroying operations had marginal ef-
fects on Transformer LMs’ predictions. Krishna
et al. (2022) found that long-context neural gen-
eration in modestly-sized Transformer language
models degenerates because models fail to prop-
erly condition on long context. Finally, studying
long-context models, Sun et al. (2021) found that
longer contexts improves prediction of only a few
tokens, an empirical finding consistent with the
theory of Sharan et al. (2018), who showed that
sequence distributions with bounded mutual infor-
mation necessarily lead to marginal average predic-
tion benefits from increasingly long context. Qin
et al. (2023) analyze how efficient Transformers
perform on a variety of long-context downstream
NLP tasks, finding that long-context transformers
are recency-biased and do not effectively use long-
range context.

6.3 The Serial-Position Effect
The U-shaped curve we observe in this work has
a connection in psychology known as the serial-
position effect (Ebbinghaus, 1913; Murdock Jr,
1962), that states that in free-association recall
of elements from a list, humans tend to best re-
member the first and last elements of the list. The
serial-position effect plays a role in understanding
how humans develop short- and long-term mem-



ory. Observing a serial-position-like effect in lan-
guage models is perhaps surprising, since the self-
attention mechanisms underlying Transformer lan-
guage models is technically equally capable of re-
trieving any token from their contexts.

7 Conclusion

We empirically study how language models use
long input contexts via a series of controlled ex-
periments. We show that language model perfor-
mance degrades significantly when changing the
position of relevant information, indicating that
models struggle to robustly access and use infor-
mation in long input contexts. In particular, per-
formance is often lowest when models must use
information in the middle of long input contexts.
We conduct a preliminary investigation of the role
of (i) model architecture, (ii) query-aware contextu-
alization, and (iii) instruction fine-tuning to better
understand how they affect how language models
use context. Finally, we conclude with a practi-
cal case study of open-domain question answering,
finding that the performance of language model
readers saturates far before retriever recall. Our
results and analysis provide a better understanding
of how language models use their input context
and provides new evaluation protocols for future
long-context models.
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A Ambiguity in Multi-Document QA
Distractor Documents

Following past work on NaturalQuestions-Open
(Izacard et al., 2021; Izacard and Grave, 2021, inter
alia), we use a Wikipedia dump from late 2018
as our retrieval corpus. However, this standard
Wikipedia dump has a small amount of temporal
mismatch with the NaturalQuestions annotations.

For example, consider the question “what nfl
team does robert griffin iii play for”. The Natu-
ralQuestions annotated answer is “currently a free
agent”. However, the Wikipedia retrieval corpus
contains the information that he plays for the “Balti-
more Ravens”, since he was released from the team
between the Wikipedia dump’s timestamp and the
NaturalQuestions annotation process.

We use the ambiguity annotations of Min et al.
(2020) to create a subset unambiguous questions.
Experiments on this unambiguous subset of the
data show similar results and conclusions as the
experiments on the full questions collection (Fig-
ure 12).
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Figure 12: Language model performance on a unam-
biguous subset of questions.

B Random Distractors in
Multi-Document QA

We also run multi-document question answering
experiments with random Wikipedia documents as
distractors, which allows us to ablate the impact
of retrieved distractors (hard negatives). Note that
in this setting, the the document containing the an-
swer can often be identified with simple heuristics
(e.g., lexical overlap with the query). Figure 13
presents the results of this experiment. Although
all models have higher absolute accuracy in this
setting, they surprisingly still struggle to reason
over their entire input context, indicating that their
performance degradation is not solely due to an
inability to identify relevant documents.

C Randomizing Distractor Order in
Multi-Document QA

Our prompt instructs the language model to use
the provided search results to answer the question.
There may be a prior in the pre-training or instruc-
tion fine-tuning data to treat search results as sorted
by decreasing relevance (i.e., the documents near
the beginning of the input context are more likely to
be useful than those at the end). To validate that our
conclusions are not simply a byproduct of this bias,
we run experiments with the modified instruction
“Write a high-quality answer for the given ques-
tion using only the provided search results (some
of which might be irrelevant). The search results
are ordered randomly.” In addition, we randomly
shuffle the k − 1 distractor documents.
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Figure 13: Language model performance on multi-
document QA when using random distractors, rather
than retrieved distractors.

Figure 14 presents the results of this experiment.
We continue to see a U-shaped performance curve,
with performance degrading when language mod-
els must use information in the middle of their
input contexts. Comparing the results in §2.3 with
those when randomizing the distractor order and
mentioning such in the prompt, we see that ran-
domization slightly decreases performance when
the relevant information is at the very beginning
of the context, and slightly increases performance
when using information in the middle and end of
the context.

D GPT-4 Performance

We evaluate GPT-4 (8K) on a subset of 500 ran-
dom multi-document QA examples with 20 total
documents in each input context (Figure 15). GPT-
4 achieves higher absolute performance than any
other language model, but still shows a U-shaped
performance curve—its performance is highest
when relevant information occurs at the very start
or end of the context, and performance degrades
when it must use information in the middle of its
input context.

E Llama-2 Performance

We evaluate Llama-2 (Touvron et al., 2023b) on
multi-document QA with 20 total documents in
each input context. The Llama tokenizer pro-
duces longer sequences than the tokenizers for our
previously-studied models, so we discard 20 exam-
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Figure 14: Language model performance when random-
izing the order of the distractors (rather than presenting
them in order of decreasing relevance) and mentioning
as such in the prompt.

1st 5th 10th 15th 20th
Position of Document with the Answer

50

60

70

80

90

Ac
cu

ra
cy

20 Total Retrieved Documents 
(~4K tokens, 500 question sample)

claude-1.3
claude-1.3-100k
gpt-3.5-turbo-0613
gpt-3.5-turbo-16k-0613

mpt-30b-instruct
longchat-13b-16k
gpt-4-0613

Figure 15: Although GPT-4 has higher absolute perfor-
mance than other models, its performance still degrades
when relevant information occurs in the middle of the
input context.



ples (out of 2655) that exceed Llama-2’s maximum
context length of 4096 tokens. We experiment with
models of varying sizes (7B, 13B, and 70B pa-
rameters), with and without additional supervised
fine-tuning and reinforcement learning from hu-
man feedback (“-chat-” models). The results are
presented in Figure 16.

Comparing Llama-2 models of varying sizes, we
find that only the larger models (13B and 70B)
exhibit the U-shaped performance curve (i.e., both
primacy and recency bias)—the smallest Llama-
2 models (7B) are solely recency-biased. Given
these results, we hypothesize that prior work (e.g.,
Khandelwal et al., 2018; Sun et al., 2021) did not
previously observe any primacy bias in language
models because the models they studied were too
small (less than 1B parameters).

Comparing between Llama-2 models with and
without additional supervised fine-tuning and re-
inforcement learning from human feedback, we
see that additional fine-tuning dramatically im-
proves performance on the multi-document QA
task. The 7B models with and without additional
fine-tuning show minimal primacy bias, and are
largely recency-biased. The 13B base model has
a dramatic primacy and recency bias—there is a
20-point accuracy disparity between the best- and
worst-case performance. Applying additional fine-
tuning to the 13B seems to slightly reduce this
bias (10-point worst-case degradation), but the bias
remains significant. However, the 70B models
with and without additional fine-tuning have largely
similar trends (showing both primacy and recency
bias), and additional fine-tuning minimally changes
the positional bias severity.
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Figure 16: Multi-document QA performance (20 total
documents) of Llama-2 models of varying sizes (7B,
13B, 70B parameters), with and without additional su-
pervised fine-tuning and reinforcement learning from
human feedback (“-chat-” models).



F Token Counts

Table 2, Table 3, and Table 4 present the average and maximum number of tokens in each of the input
contexts for all experimental settings. Note that MPT-30B and MPT-30B-Instruct use the same tokenizer,
GPT-3.5-Turbo and GPT-3.5-Turbo (16K) use the same tokenizer, and Claude-1.3 and Claude-1.3 (100K)
use the same tokenizer. Furthermore, the Claude-1.3 tokenizer is the same as the GPT-3.5-Turbo tokenizer,
modulo some additional special tokens that do not appear in our data. As a result, the token counts for
these two model families is the same in our experimental settings.

Closed-Book Oracle

avg ± stdev max avg ± stdev max

LongChat-13B (16K) 55.6 ± 2.7 70 219.7 ± 48.5 588
MPT-30B 43.5 ± 2.2 58 187.9 ± 41.8 482
GPT-3.5-Turbo 15.3 ± 2.2 29 156.0 ± 41.8 449
Claude-1.3 15.3 ± 2.2 29 156.0 ± 41.8 449

Table 2: Token count statistics for each of the evaluated models on the closed-book and oracle multi-document
question answering settings.

10 docs 20 docs 30 docs

avg ± stdev max avg ± stdev max avg ± stdev max

LongChat-13B (16K) 1749.9 ± 112.4 2511 3464.6 ± 202.3 4955 5181.9 ± 294.7 7729
MPT-30B 1499.7 ± 88.5 1907 2962.4 ± 158.4 3730 4426.9 ± 230.5 5475
GPT-3.5-Turbo 1475.6 ± 86.5 1960 2946.2 ± 155.1 3920 4419.2 ± 226.5 6101
Claude-1.3 1475.6 ± 86.5 1960 2946.2 ± 155.1 3920 4419.2 ± 226.5 6101

Table 3: Token count statistics for each of the evaluated models on each of the document question answering
settings.

75 KV pairs 140 KV pairs 300 KV pairs

avg ± stdev max avg ± stdev max avg ± stdev max

LongChat-13B (16K) 5444.5 ± 19.1 5500 10072.4 ± 24.1 10139 21467.3 ± 35.9 21582
MPT-30B 4110.5 ± 23.8 4187 7600.9 ± 31.1 7687 16192.4 ± 46.6 16319
GPT-3.5-Turbo 3768.7 ± 25.6 3844 6992.8 ± 34.1 7088 14929.4 ± 50.7 15048
Claude-1.3 3768.7 ± 25.6 3844 6992.8 ± 34.1 7088 14929.4 ± 50.7 15048

Table 4: Token count statistics for each of the evaluated models on each of the key-value (KV) retrieval settings.



G Full Multi-Document Question Answering Results

This section tabulates model performance when evaluated on the multi-document QA task with varying
numbers of documents (Figure 5). “Index n” indicates performance when the document with the answer
occurs at position n + 1, where lower indices are closer to the start of the input context. For example,
index 0 refers to performance when the document with the answer is placed at the very start of the context
(i.e., first amongst all documents).

G.1 10 Total Retrieved Documents

Model Index 0 Index 4 Index 9

Claude-1.3 62.9% 58.3% 59.7%
Claude-1.3 (100K) 63.1% 58.3% 59.7%
GPT-3.5-Turbo 76.8% 61.2% 62.4%
GPT-3.5-Turbo (16K) 76.9% 61.0% 62.5%
MPT-30B-Instruct 60.2% 56.2% 59.7%
LongChat-13B (16K) 72.1% 58.9% 58.5%

Table 5: Model performance when evaluated on the multi-document QA task with 10 total retrieved documents.

G.2 20 Total Retrieved Documents

Model Index 0 Index 4 Index 9 Index 14 Index 19

Claude-1.3 59.9% 55.9% 56.8% 57.2% 60.1%
Claude-1.3 (100K) 59.8% 55.9% 57.0% 57.4% 60.0%
GPT-3.5-Turbo 75.8% 57.2% 53.8% 55.4% 63.2%
GPT-3.5-Turbo (16K) 75.7% 57.3% 54.1% 55.4% 63.1%
MPT-30B-Instruct 53.7% 51.8% 52.2% 52.7% 56.3%
LongChat-13B (16K) 68.6% 57.4% 55.3% 52.5% 55.0%

Table 6: Model performance when evaluated on the multi-document QA task with 20 total retrieved documents.

G.3 30 Total Retrieved Documents

Model Index 0 Index 4 Index 9 Index 14 Index 19 Index 24 Index 29

Claude-1.3 59.1% 55.1% 54.8% 55.7% 56.4% 56.2% 59.9%
Claude-1.3 (100K) 59.1% 55.1% 54.9% 55.7% 56.6% 56.1% 60.0%
GPT-3.5-Turbo (16K) 73.4% 55.1% 50.5% 50.9% 51.8% 54.9% 63.7%
MPT-30B-Instruct 51.6% 51.3% 51.2% 49.0% 49.6% 51.3% 54.1%
LongChat-13B (16K) 66.9% 54.8% 52.5% 52.9% 52.2% 51.3% 55.1%

Table 7: Model performance when evaluated on the multi-document QA task with 30 total retrieved documents.


